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ABSTRACT OF THE DISSERTATION

Essays on Missing Data Models, BLP Contraction Mappings, and MCMC
Estimation

By

Phillip Li

Doctor of Philosophy in Economics

University of California, Irvine, 2012

Professor David Brownstone, Chair

My dissertation is composed of four chapters that focus on missing data models, BLP

contraction mappings, and Markov chain Monte Carlo estimation.

The first chapter focuses on estimating sample selection models with two inciden-

tally truncated outcomes and two corresponding selection mechanisms. The method

of estimation is an extension of the Markov chain Monte Carlo (MCMC) sampling

algorithm from Chib (2007) and Chib et al. (2009). Contrary to conventional data

augmentation strategies for dealing with missing data, the proposed algorithm aug-

ments the posterior with only a small subset of the total missing data caused by

sample selection. This results in improved convergence of the MCMC chain and de-

creased storage costs, while maintaining tractability in the sampling densities. The

methods are applied to estimate the effects of residential density on vehicle miles trav-

eled and vehicle holdings in California. The empirical results suggest that residential

density has a small economic impact on vehicle usage and holdings. In addition, the

results show that changes to vehicle holdings from increased residential density are

more sensitive for less fuel-efficient vehicles than for fuel-efficient vehicles on average.

The second chapter considers the estimation of a multivariate sample selection model

ix
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with p pairs of selection and outcome variables. A unique feature of this model is

that the variables can be discrete or continuous with any parametric distribution,

allowing a large class of multivariate models to be accommodated. For example, the

model may involve any combination of variables that are continuous, binary, ordered,

or censored. Although the joint distribution can be difficult to specify, a multivariate

Gaussian copula function is used to link the marginal distributions together and

handle the multivariate dependence. The proposed estimation approach relies on

the MCMC-based techniques from Lee (2010) and Pitt et al. (2006) and adapts the

methods from the preceding authors to a missing data setting. An important aspect

of the estimation algorithm, in the same spirit as the algorithm from the first chapter,

is that it does not require simulation of the missing outcomes. This has been shown to

improve the mixing of the Markov chain. The methods are applied to both simulated

and real data.

The third paper analyzes a discrete choice model where the observed outcome is not

the exact alternative chosen by a decision maker but rather the broad group of alterna-

tives in which the chosen alternative belongs to. This model is designed for situations

where the choice behavior at a lower level is of interest but only higher level data are

available (e.g. analyzing households’ choices for vehicles at the make-model-trim level

but only choice data at the make-model level are observed). I show that the parame-

ters in the proposed model are locally identified, but for certain configurations of the

data, they are weakly identified. Methods to incorporate additional information into

the problem are discussed, and both maximum likelihood and Bayesian estimation

methods are explored.

The last chapter proposes improvements to the contraction mappings used in the

context of multinomial logit models. The contraction mapping algorithm proposed in

Berry et al. (1995) is slow to converge and is a major burden to implement in applied

x
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work. While it is relatively quick to converge for a single run of the algorithm, it is

computationally expensive when repeated evaluations are needed, particularly when

the algorithm is embedded into maximum likelihood, generalized method of moments,

or Bayesian Markov chain Monte Carlo estimation routines. To alleviate this problem,

I explore four simple modifications of the contraction mapping to improve its rate of

convergence. Importantly, the modifications can be incorporated into existing code

with minimal effort. In a simulation study, I demonstrate that the new algorithms

require significantly fewer iterations to converge to the unique vector of fixed points

than the original specification. The best algorithm results in an 80-fold improvement.

xi
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Chapter 1

Estimation of sample selection

models with two selection

mechanisms

1.1 Introduction

The seminal sample selection model of Heckman (1976, 1979b) has generated a vast

amount of theoretical and empirical research across a variety of disciplines. Sample

selection, also referred to as incidental truncation, occurs when a dependent variable

of interest is non-randomly missing for a subset of the sample as a result of a separate

selection variable. A well-known application involves market wages (the outcome of

interest) and labor force participation (the selection variable), in which wages are

missing for individuals who are not participating in the labor force. Consequently,

the remaining observations available to the researcher are non-random and do not

represent the population of interest. As a result, estimation based only on this selected

1
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sample may lead to specification errors. This problem is ubiquitous in economics and

disciplines that use observational data, therefore estimation techniques that address

this issue are of substantial interest.

The conventional sample selection model with a single selection mechanism and its

variants have been extensively estimated. Common classical estimation methods are

developed and discussed in Amemiya (1984), Gronau (1973), Heckman (1976, 1979b),

and Wooldridge (1998, 2002), while semiparametric estimation and a variety of ex-

tensions are discussed in Heckman (1990), Manski (1989), and Newey et al. (1990).

Extensions in the direction of multiple selection mechanisms are discussed in Shon-

kwiler and Yen (1999), Yen (2005), and Poirier (1980), where the two former articles

discuss a model similar to that presented here, and the latter discusses observability

of a single binary outcome as a result of two binary selection variables. The preceding

procedures generally involve two classes of estimators: 1) two-step estimators that

are consistent, asymptotically normal, but inefficient, and 2) maximum likelihood

estimators that depend on evaluations of integrals. Puhani (2000) studies the prac-

tical performance of both classes of estimators using a Monte Carlo framework and

criticizes their small sample properties. Alternatively, Bayesian estimation results in

finite sample inference and avoids direct evaluations of integrals. Recent develop-

ments with one selection mechanism include Chib et al. (2009), Greenberg (2007),

and van Hasselt (2009); extensions such as semiparametric estimation, endogeneity,

and multiple outcome types are also discussed.

The model being analyzed contains a correlated system of equations with two contin-

uous dependent variables of interest, each with an incidental truncation problem, and

two corresponding selection variables. A major difference between this model and

much previous work is that there are two incidentally truncated outcomes being con-

sidered instead of one, resulting in four possible combinations of missing data for any

2
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observational unit and a complex pattern of missing data across the entire sample.

The main contribution of this article is in the extension of the Markov chain Monte

Carlo (MCMC) algorithm with “minimal data augmentation” to accommodate the

nature of missing data for the model being analyzed. The minimal data augmenta-

tion technique first appeared in Chib (2007) to estimate the Bayesian version of the

Roy model and was later extended in Chib et al. (2009) to estimate a semiparamet-

ric model with endogeneity and sample selection. This paper proposes an algorithm

that only involves a minimal subset of the total missing data in the sampling scheme,

resulting in improved convergence of the Markov chain and decreased storage costs,

while maintaining tractability of the sampling densities without the complete data.

The sampling densities are easy to draw from and result in samples that are close to

iid for many parameters. A simulation study is included to study the performance of

the algorithm.

The methods are applied to study the effects of residential density on vehicle miles

traveled and vehicle holdings in California. A careful analysis is needed since data

for vehicle miles traveled is only observable for households that own vehicles. The

resulting estimation results will supplement the current literature and be informative

for policy decisions.

3
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1.2 Sample Selection Model

The model is given by

yi,1 = x′i,1β1 + εi,1, (1.1)

yi,2 = x′i,2β2 + εi,2, (1.2)

y∗i,3 = x′i,3β3 + εi,3, (1.3)

y∗i,4 = x′i,4β4 + εi,4, (1.4)

yi,j = tj if αtj−1,j < y∗i,j ≤ αtj ,j, (1.5)

δtj ,j = ln

{
αtj ,j − αtj−1,j

1− αtj ,j

}
, (1.6)

for observational units i = 1, . . . , N , equations j = 3, 4, ordered categories tj =

1, . . . , Tj, ordered cutpoints α0,j = −∞ < α1,j = 0 < α2,j = 1 < α3,j < . . . <

αTj−1,j
< αTj ,j = +∞, and transformed cutpoints δtj ,j for tj = 3, . . . , Tj − 1. The

cutpoint restrictions are discussed in Section 1.3.3. The continuous dependent vari-

ables of interest are yi,1 and yi,2. Due to sample selection, their observability depends

on the values of two ordered selection variables, yi,3 and yi,4 from (1.5), respectively.

Following Albert and Chib (1993), the ordered variables are modeled in a threshold-

crossing framework with the latent variables y∗i,3 and y∗i,4 according to equations (1.3)

through (1.5). In addition, a re-parameterization of the ordered cutpoints according

to equation (1.6) is performed to remove the ordering constraints (Chen and Dey,

2000). The row vector x′i,j and conformable column vector βj are the exogenous

covariates and corresponding regression coefficients, respectively. The vector of er-

ror terms (εi,1, εi,2, εi,3, εi,4)
′ is distributed independent multivariate normal, N (0,Ω),

where Ω is an unrestricted covariance matrix. This normality assumption for the

4
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Variables N1 N2 N3 N4

yi,1 X © X ©
yi,2 X X © ©
yi,3 X X X X
yi,4 X X X X

Table 1.1: Variable observability. The symbols© and X denote whether the variable
is missing or observed in the sample partition, respectively.

error terms results in ordered probit models for equations (1.3) through (1.5).

A key feature of the model is the inclusion of two incidentally truncated outcomes,

which results in four cases of observability. For any observational unit i, only one of

the following vectors is observed

(yi,1, yi,2, yi,3, yi,4)
′, (yi,2, yi,3, yi,4)

′, (yi,1, yi,3, yi,4)
′, (yi,3, yi,4)

′, (1.7)

where yi,1 and yi,2 are missing if and only if yi,3 and yi,4 are in known, application-

specific categories γ and λ, respectively. In the context of the empirical application,

the mileage driven with trucks and cars (yi,1 and yi,2) are missing when the number

of trucks and cars owned by the household (yi,3 and yi,4) equal zero, expressed as

yi,3 = γ = 0 and yi,4 = λ = 0. The rules involving yi,3 and yi,4 that affect the

observability are known as the selection mechanisms. To be specific about where

incidental truncation occurs, let Nr (r = 1, . . . , 4) denote partitions of the sample

set that correspond to the four aforementioned cases of observability in (1.7). In

addition, let nr denote their sizes such that
∑4

r=1 nr = N . Using this notation, the

variable yi,1 is only observed for units in N1 ∪N3, and yi,2 is only observed for units

in N1 ∪N2, as illustrated in Table 1.1. Other quantities such as the ordered variables

and explanatory variables are always observed.

5
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1.3 Estimation

The proposed estimation algorithm uses MCMC methods with minimal data augmen-

tation (MDA) based on Chib (2007) and Chib et al. (2009). The idea, motivation,

and implementation of MDA are described in Section 1.3.1. Section 1.3.2 provides

the data-augmented likelihood, priors, and data-augmented posterior. Section 1.3.3

presents the sampling algorithm in detail.

1.3.1 Minimal Data Augmentation (MDA)

The aim of MDA is to augment the posterior with the least amount of missing out-

comes possible while keeping the densities of interest tractable for sampling. By in-

troducing all the latent and missing data along the lines of Tanner and Wong (1987),

many complex econometric models can be estimated as linear regression models with

Gibbs or Metropolis-Hastings sampling (see Chapter 14 of Koop et al. (2007) for

many examples). This approach is often desirable since given the “complete” data,

the full conditional densities for β̃, Ω, and other quantities are in standard forms

(Chib and Greenberg, 1995). However, as noted in Chib et al. (2009), such a “naive”

approach would degrade the mixing of the Markov chains and increase computation

time. This problem is especially intensified when the quantity of missing outcomes

due to the selection mechanism is large or when the model contains a sizable number

of unknown parameters. Even if these impediments are disregarded, sample selection

makes simulating the missing outcomes difficult as influential covariates may also be

missing as a result of sample selection. For these reasons, it is generally desirable to

minimize the amount of missing outcomes involved in the algorithm.

The proposed algorithm only augments the posterior with the missing variable yi,2 in

6
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Variables N1 N2 N3 N4

yi,1 X © X ©
yi,2 X X

⊗
©

y∗i,3 × × × ×
y∗i,4 × × × ×

Table 1.2: Minimal data augmentation scheme. The symbols X, ×,
⊗

, and© denote
whether the variable is observed, latent but augmented, missing but augmented, or
missing but not augmented in the posterior, respectively.

N3 and the latent variables {y∗i,3 y∗i,4} for all observations, while leaving yi,1 in N2∪N4

and yi,2 in N4 out of the sampler, as illustrated in Table 1.2. While the choices

of variables and observations for augmentation appear arbitrary, they are specifically

chosen to facilitate the sampling of Ω (see Section 1.3.3 for more details). By assuming

that yi,1 is missing more than yi,2, this algorithm includes less than 50% of all missing

data, which results in lower storage costs. In the vehicle choice application with 2, 297

observations, only 18% of the total missing data is used.

1.3.2 Posterior Analysis

The data-augmented posterior density is proportional to the product of the data-

augmented likelihood and the prior density for the unknown parameters:

π(θ, ymiss, y
∗|yobs) ∝ f(yobs, ymiss, y

∗|θ)π(θ). (1.8)

Define the vector θ = (β̃, δ,Ω), where β̃ = (β′1, β
′
2, β

′
3, β

′
4)
′ and δ = {δtj ,j}, to contain

all the unknown parameters. Also, define ymiss and y∗ to respectively contain the

augmented missing outcomes and latent variables from Table 1.2, and define yobs to

contain all the observed data from Table 1.1.

7
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Due to the intricate pattern of missing outcomes, specific quantities for each case of

observability need to be defined. Let

ỹi,1:4 = (yi,1, yi,2, y
∗
i,3, y

∗
i,4)
′, ỹi,2:4 = (yi,2, y

∗
i,3, y

∗
i,4)
′,

ỹi,134 = (yi,1, y
∗
i,3, y

∗
i,4)
′, ỹi,3:4 = (y∗i,3, y

∗
i,4)
′,

and using similar notation, let X̃i,1:4, X̃i,2:4, X̃i,134, and X̃i,3:4 be block-diagonal ma-

trices with the corresponding vectors of covariates on the block diagonals and zeros

elsewhere. Similarly, define S ′2:4, S
′
134, and S ′3:4 to be conformable matrices that “select

out” the appropriate regression coefficients when pre-multiplied to β̃. For example,

X̃i,3:4 =

 x′i,3 0

0 x′i,4

 , S3:4 =

 0

I

 , and S ′3:4β̃ =

 β3

β4

 .

Now, define and partition Ω and Ω22 as

Ω =

 Ω11
(1×1)

Ω12

Ω21 Ω22
(3×3)

 , Ω22 =

 Ω11
(1×1)

Ω12

Ω21 Ω22
(2×2)

 ,

and denote the covariance matrix for ỹi,134 as Ω134.

The data-augmented likelihood needed in equation (1.8) is given by

f(yobs, ymiss, y
∗|θ) ∝

∏
N1∪N3

φ(ỹi,1:4|X̃i,1:4β̃,Ω)
∏
N2

φ(ỹi,2:4|X̃i,2:4S
′
2:4β̃,Ω22)× (1.9)

∏
N4

φ(ỹi,3:4|X̃i,3:4S
′
3:4β̃,Ω22)

N∏
i=1

4∏
j=3

I(αyi,j−1,j < y∗i,j ≤ αyi,j ,j),

8
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where φ(x|µ,Σ) denotes the density of a multivariate normal distribution with mean

vector µ and covariance matrix Σ, and I(·) denotes an indicator function. The last

product in (1.9) is the joint probability function of the ordered selection variables,

which is known with certainty conditional on the latent variables. For some calcula-

tions, the data-augmented likelihood marginally of the missing outcomes is needed;

it is obtained by integrating {yi,2}i∈N3 out of equation (1.9) and is given by

f(yobs, y
∗|θ) ∝

∏
N1

φ(ỹi,1:4|X̃i,1:4β̃,Ω)
∏
N2

φ(ỹi,2:4|X̃i,2:4S
′
2:4β̃,Ω22)× (1.10)∏

N3

φ(ỹi,134|X̃i,134S
′
134β̃,Ω134)

∏
N4

φ(ỹi,3:4|X̃i,3:4S
′
3:4β̃,Ω22)×

N∏
i=1

4∏
j=3

I(αyi,j−1,j < y∗i,j ≤ αyi,j ,j).

Prior independence is assumed for simplicity. Let

β̃ ∼ N (β0, B0), Ω ∼ IW(ν1, Q), δ ∼ N (δ0, D0), (1.11)

where the priors for β̃ and δ are multivariate normal, and the prior for Ω is inverse-

Wishart. The hyperparameters are set to reflect prior information. To be non-

informative, set the mean vectors β0 and δ0 to zeros, the covariance matrices B0 and

D0 to diagonal matrices with 100 on the diagonals, ν1 to 4, and Q to an identity

matrix.

9
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1.3.3 Sampling Algorithm

For the computations that will follow, define δj and δ(−j) to contain all the transformed

cutpoints for equations j and other than j, respectively. Similarly, define y∗j and y∗(−j)

to contain the latent variables from y∗ for equations j and other than j.

The posterior distribution is simulated by MCMC methods. The algorithm, which

omits extraneous quantities from the conditioning set, is summarized as follows:

1. Sample β̃ from the distribution β̃|yobs,Ω, y∗.

2. Sample (δj, y
∗
j ) for j = 3, 4 from the distribution δj, y

∗
j |yobs, β̃,Ω, δ(−j), y∗(−j).

3. Sample Ω from the distribution Ω|yobs, β̃, ymiss, y∗.

4. Sample yi,2 for i ∈ N3 from the distribution yi,2|yobs, β̃,Ω, y∗.

Note that the quantities β̃, δj, and y∗j are sampled without conditioning on the miss-

ing outcomes as this improves the mixing of the Markov chain. As the number of

iterations approaches infinity, the draws can be shown to come from the posterior dis-

tribution of interest by collapsed MCMC theory (Liu, 1994) and Metropolis-Hastings

convergence results (Chib and Greenberg, 1995; Tierney, 1994).

Identification in the ordered probit equations is achieved by imposing multiple cut-

point restrictions, following Fang (2008) and Jeliazkov et al. (2008). The cutpoints

α1,j and α2,j are fixed at zero and one, respectively, along with α0,j = −∞ and

αTj ,j = +∞. The proposed restrictions offer two advantages. First, the elements of

Ω corresponding to the ordered variables are not restricted to be in correlation form,

which allows for straightforward interpretation. Second, the transformed cutpoints

do not need to be sampled when the selection variables only have three categories.

10
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Sampling β̃

The conditional distribution for β̃ can be easily derived by combining (1.10) and

the normal prior for β̃. By completing the square in the exponential functions, the

distribution of interest can be recognized as N (β,B), where

β = B


∑
N1

X̃ ′i,1:4Ω
−1ỹi,1:4 +

∑
N2

S2:4X̃
′
i,2:4Ω

−1
22 ỹi,2:4+∑

N3

S134X̃
′
i,134Ω

−1
134ỹi,134 +

∑
N4

S3:4X̃
′
i,3:4Ω

−1
22 ỹi,3:4 +B−10 β0

 ,

B =


∑
N1

X̃ ′i,1:4Ω
−1X̃i,1:4 +

∑
N2

S2:4X̃
′
i,2:4Ω

−1
22 X̃i,2:4S

′
2:4+∑

N3

S134X̃
′
i,134Ω

−1
134X̃i,134S

′
134 +

∑
N4

S3:4X̃
′
i,3:4Ω

−1
22 X̃i,3:4S

′
3:4 +B−10


−1

.

Sampling (δj, y
∗
j )

The pair (δj, y
∗
j ) is sampled in one block from the joint distribution

δj, y
∗
j |yobs, β̃,Ω, δ(−j), y∗(−j)

for j = 3, 4, as proposed in Albert and Chib (2001) and Chen and Dey (2000). The

vector of transformed cutpoints δj is first sampled marginally of y∗j from

δj|yobs, β̃,Ω, δ(−j), y∗(−j),

and then y∗j is sampled conditionally on δj from

y∗j |yobs, β̃,Ω, δ, y∗(−j).
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Sampling is performed jointly, because drawing δj and y∗j each from their full condi-

tional distributions may induce high autocorrelation in the MCMC chains (Nandram

and Chen, 1996).

The marginal distribution of δj, recovered by integrating y∗j out of the joint distribu-

tion, is difficult to sample from directly. Instead, an independence chain Metropolis-

Hastings step is used. A new draw, δ′j, is proposed from a multivariate t distribution

with ν2 = 5 degrees of freedom, fT (δj|δ̂j, D̂j, ν2), where δ̂j and D̂j are the maximizer

and negative Hessian of f(yj|yobs(−j), β̃,Ω, δj, y∗(−j))π(δj|δ(−j)) evaluated at the max-

imum, respectively. The vectors yj and yobs(−j) respectively contain all elements in

yobs associated with equations j and other than j. The acceptance probability for δ′j

is

αMH(δj, δ
′
j) = min

{
1,
f(yj|yobs(−j), β̃,Ω, δ′j, y∗(−j))π(δ′j|δ(−j))fT (δj|δ̂j, D̂j, ν2)

f(yj|yobs(−j), β̃,Ω, δj, y∗(−j))π(δj|δ(−j))fT (δ′j|δ̂j, D̂j, ν2)

}
,(1.12)

where the conditional probabilities of yj can be calculated as products of univariate

normal distribution functions (Chib et al., 2009, Section 2.1).

By independence across observational units, the vector y∗j can be recovered by sam-

pling y∗i,j from y∗i,j|yobs, β̃,Ω, δ, y∗(−j) for i = 1, . . . , N . From equation (1.10), this

distribution is truncated normal. Let T N (µ, σ2, a, b) denote a univariate normal dis-

tribution truncated to the region (a, b) with mean µ and variance σ2. The distribution

of interest is given by

y∗i,j|yobs, β̃,Ω, δ, y∗(−j) ∼ T N (µi,j, σ
2
i,j, αyi,j−1,j, αyi,j ,j), (1.13)
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where µi,j and σ2
i,j are the conditional mean and variance for a normal distribution.

Sampling Ω

Due to the non-standard form of the posterior density in equation (1.8), the covariance

matrix Ω cannot be sampled in one block from the usual inverse-Wishart distribu-

tion. Instead, one-to-one transformations of Ω and Ω22 will be sampled and used to

construct a draw for Ω. The presented derivations are an extension of Chib et al.

(2009) by applying two sets of transformations instead of one due to the additional

incidentally truncated outcome.

Define the transformations

Ω11·2 = Ω11 − Ω12Ω
−1
22 Ω21, B21 = Ω−122 Ω21,

Ω11·2 = Ω11 − Ω12Ω
−1
22 Ω21, B21 = Ω

−1
22 Ω21,

and partition Q and Q22 as

Q =

 Q11
(1×1)

Q12

Q21 Q22
(3×3)

 , Q22 =

 Q11
(1×1)

Q12

Q21 Q22
(2×2)

 .

To sample Ω22, a change of variables from Ω22 to (Ω22,Ω11·2, B21) is applied to the

density Ω22|yobs, β̃, y∗ with Jacobian |Ω22|. The resulting density is proportional to a

product of three recognizable distribution kernels, namely two inverse-Wisharts and
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one matric-normal. They are

Ω22|yobs, β̃, y∗ ∼ IW(ν1 +N − 1, Q22 +
N∑
i=1

ε̃i,3:4ε̃
′
i,3:4), (1.14)

Ω11·2|yobs, β̃, y∗ ∼ IW(ν1 + n1 + n2, R11·2), (1.15)

B21|Ω11·2, yobs, β̃, y
∗ ∼ MN (2×1)(R

−1
22 R21,Ω11·2 ⊗R

−1
22 ), (1.16)

where

ε̃i,3:4 = (ỹi,3:4 − X̃i,3:4S
′
3:4β̃),

ε̃i,2:4 = (ỹi,2:4 − X̃i,2:4S
′
2:4β̃),

R22 = (Q22 +
∑
N1∪N2

ε̃i,2:4ε̃
′
i,2:4)

is partitioned to be conformable with Q22 using similar notation, and

R11·2 = R11 −R12R
−1
22 R21.

By drawing from (1.14) to (1.16) and manipulating the inverted quantities, a draw

of Ω22 marginally of the missing data can be recovered.

To sample Ω, a similar change of variables from Ω to (Ω22,Ω11·2, B21) is applied to

Ω|yobs, β̃, ymiss, y∗ with a Jacobian of |Ω22|. The resulting distributions of interest are

Ω11·2|yobs, β̃, ymiss, y∗ ∼ IW(ν1 + n1 + n3, R11·2), (1.17)

B21|Ω11·2, yobs, β̃, ymiss, y
∗ ∼ MN (3×1)(R

−1
22 R21,Ω11·2 ⊗R−122 ), (1.18)
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where ε̃i,1:4 = (ỹi,1:4 − X̃i,1:4β̃), R = (Q +
∑
N1∪N3

ε̃i,1:4ε̃
′
i,1:4) is partitioned to be con-

formable with Q, and R11·2 = R11 − R12R
−1
22 R21. The covariance matrix Ω can now

be recovered using draws from (1.14) to (1.18).

Sampling ỹi,2

From (1.8), the conditional distributions of ỹi,2 are easily recognized as

yi,2|yobs, β̃,Ω, y∗ ∼ N (ηi, ω
2
i ) for i ∈ N3, (1.19)

where ηi and ω2
i are the conditional mean and variance of yi,2.

1.4 Simulation Study

This section evaluates the performance of the MDA algorithm from Section 1.3.3 using

simulated data. For reference, the algorithm is compared to a similar one that aug-

ments all the missing data from Table 1.1, denoted as y∗miss, and conditions on them

at every step. Specifically, this benchmark algorithm with full data augmentation

(FDA) recursively samples from [β̃|yobs, y∗miss,Ω, y∗], [δj, y
∗
j |yobs, y∗miss, β̃,Ω, δ(−j), y∗(−j)],

[Ω|yobs, y∗miss, β̃, y∗], and [y∗miss|yobs, β̃,Ω, δ, y∗], which are densities similar to those

found in Section 1.3.3, but without the missing data integrated out.

The model being considered is from equations (1.1) to (1.6). It contains five explana-

tory variables for each equation (including the constant), three ordered categories for

each selection variable, and N = 500 observations. The unknown parameters are

chosen so that the pattern of missing data is similar to the application in Section
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1.5, with roughly 50% and 25% of the outcomes are missing from equations (1.1)

and (1.2), respectively. As a result, the MDA algorithm only augments about 20%

of the total missing data. The covariance matrix Ω is set to I + 0.7ii′, where i is a

column of ones, implying a correlation of about 0.4 between the equations. Let ωij

denote the element of Ω corresponding to the i-th row and j-th column. The prior

hyperparameters are chosen to be non-informative as discussed in Section 1.3.2. Note

that various combinations of observations, explanatory variables, and proportions of

missing data were considered, but the results are not presented as they did not vary

much from the performance pattern in this base case.

The algorithms are iterated 12,500 times with a burn-in of 2,500 draws. The MDA

algorithm takes 17 seconds to perform 1,000 iterations on average, and the FDA

algorithm takes 19 seconds. Following Chib et al. (2009), the performance is studied

with inefficiency factors over 30 Monte Carlo replications. The inefficiency factor for

the k-th parameter is defined as 1 + 2
∑L

l=1 ρk(l)(1 −
l
L

), where ρk(l) is the sample

autocorrelation at the l-th lag for the k-th parameter, and L is the lag in which the

autocorrelations taper off (Chib, 2001). This quantity measures the efficiency loss

when using correlated MCMC samples instead of independent samples; values close

to 1 generally indicate an efficient sampler.

Before the results are discussed, note that the sampling density for Ω22 does not

depend on ymiss, while the densities involving the other elements of Ω do depend on

the missing data through ỹi,1:4 and ỹi,2:4 in R and R22, respectively. This suggests

that the benefits of MDA relative to FDA will be more evident for the elements of Ω

involving equations (1.1) and (1.2) since they depend on the missing data. Using a

similar argument, the elements of β1 and β2 from β̃ are also expected to have larger

gains in performance relative to β3 and β4.

Boxplots of the inefficiency factors from both algorithms are displayed in Figure 1.1.
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The plots for β̃ suggest that these parameters are generally sampled efficiently, except

for the constant in β1 due to the large fraction of missing outcomes in equation (1.1).

The median inefficiency factors for β3 and β4 (excluding the constant) are between 1.1

and 1.4 under both algorithms. As previously discussed, the two algorithms perform

similarly here, although the inefficiency factors are slightly lower for MDA. For β1

and β2, the median inefficiency factors are around 1 under MDA, but fall between

1.5 and 3 under FDA, indicating that MDA provides very efficient draws. Even with

the inclusion of more explanatory variables (e.g. 21 variables for each equation, as in

the empirical application), the resulting inefficiency factors under MDA are close to

1 (the results are not included due to graphical limitations). For Ω, the inefficiency

factors are predictably lower when using MDA. For example, the median factors for

ω11 and ω31 decrease from 9 to 3 and 17 to 4, respectively.

To show that the sampling of Ω is correct under MDA, the posterior means for vech(Ω)

from one of the Monte Carlo replication are

(1.67, 0.76, 1.74, 0.74, 0.67, 1.69, 0.71, 0.71, 0.65, 1.64)′.

The corresponding posterior standard deviations are

(0.09, 0.06, 0.06, 0.08, 0.05, 0.08, 0.06, 0.05, 0.04, 0.06)′.

As the number of observations increase, the posterior means approach the true Ω

from the data generating process.

Overall, the median and average inefficiency factors for all the parameters estimated

using the MDA algorithm are less than or equal to their FDA counterparts. This

result is consistent with the notion that, in this context, data augmentation is only

used to increase the tractability of the sampling densities, so integrating them out of
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Figure 1.1: Boxplots of inefficiency factors using the FDA and MDA algorithms for
β̃ = (β′1, β

′
2, β

′
3, β

′
4)
′ and vech(Ω) = (ω11, ω21, ω22, ω31, ω32, ω33, ω41, ω42, ω43, ω44)

′.

the densities should not reduce the performance of the algorithm. For the majority

of the parameters, the MDA algorithm results in lower inefficiency factors, indicative

of both lower autocorrelations between the MCMC draws and of improved sampler

performance when only a minimal subset of missing data is included. This result is

especially evident for the parameters that are highly dependent on the missing data.

As for the remaining parameters, they are efficiently estimated in both algorithms.

1.5 Application

Studies suggest that higher urban spatial structure, including residential density, is

related to lower vehicle usage (Brownstone and Fang, 2009; Brownstone and Golob,

2009; Cervero and Kockelman, 1997; Dunphy and Fisher, 1996; Fang, 2008). As a re-

sult, residential density is one parameter in reducing fuel consumption of automobiles

or influencing household travel behavior. Policies targeting residential density can
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complement traditional ones such as limiting vehicle usage by total mileage driven

or enforcing fuel efficiency on vehicles. Improved understanding of this relationship

can also influence city development, zoning decisions, congestion growth, and project

evaluations. However, vehicle usage data commonly contains a large proportion of

missing values due to the lack of vehicle ownership. If these missing values are not

modeled correctly or simply omitted from the sample, estimates of interest will suffer

from misspecification errors.

The sample selection model is used to jointly study the effects of residential density

on vehicle usage and holdings in California. One possible causal relationship suggests

that denser areas increase the cost of operating vehicles. Residential areas with more

houses per square mile commonly have narrow streets, congested roads, and limited

parking spaces, which contribute to higher vehicle fuel consumption and operating

costs when traveling around these neighborhoods, especially for less fuel-efficient ve-

hicles. As a result, households will tend to drive less on average and switch to more

fuel-efficient vehicles. The data is obtained from the 2001 National Household Travel

Survey from which a subsample 2,297 households from California is used. Table 1.3

provides detailed summary statistics. Outcomes of interest are the annual mileage

driven with trucks and cars (measures of vehicle usage) and the number of trucks and

cars owned by a household (measures of vehicle holdings). They are modeled jointly

with exogenous covariates such as residential density, household size, income, home

ownership status, and education levels.
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Variable Description Mean SD
Dependent variables

TMILE Mileage per year driven 7.14 10.97
with trucks (1,000 miles)

CMILE Mileage per year driven 8.90 10.00
with cars (1,000 miles)

TNUM Number of trucks owned by the household 0.72 0.79
CNUM Number of cars owned by the household 1.10 0.82

Exogenous covariates
DENSITY Houses per square mile 2564.99 1886.09
BIKES Number of bicycles 0.97 1.23
HHSIZE Number of individuals in a household 2.69 1.44
ADLTS Number of adults in a household 1.99 0.79
URB Household is in an urban area 0.93 0.25
INC1 Household income is between 20K and 30K 0.11 0.31
INC2 Household income is between 30K and 50K 0.21 0.41
INC3 Household income is between 50K and 75K 0.19 0.39
INC4 Household income is between 75K and 100K 0.13 0.33
INC5 Household income is greater than 100K 0.22 0.41
HOME Household owns the home 0.69 0.46
HS Highest household education 0.31 0.46

is a high school degree
BS Highest household education 0.46 0.50

is at least a bachelor’s degree
CHILD1 Youngest child is under 6 years old 0.17 0.37
CHILD2 Youngest child is between 6 and 15 years old 0.18 0.38
CHILD3 Youngest child is between 15 and 21 years old 0.06 0.23
LA Household lives in Los Angeles MSA 0.42 0.49
SAC Household lives in Sacramento MSA 0.08 0.27
SD Household lives in San Diego MSA 0.09 0.28
SF Household lives in San Francisco MSA 0.23 0.42

Table 1.3: Descriptive statistics based on 2, 297 observations.

The model is given by

yi,1 = β0,1 + log(DENSITYi)β1,1 + x′iβ1 + εi,1, (1.20)

yi,2 = β0,2 + log(DENSITYi)β1,2 + x′iβ2 + εi,2,

y∗i,3 = β0,3 + log(DENSITYi)β1,3 + x′iβ3 + εi,3,

y∗i,4 = β0,4 + log(DENSITYi)β1,4 + x′iβ4 + εi,4,
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for i = 1, . . . , 2, 297 households, where yi,1 and yi,2 are annual mileage driven with

trucks and cars, y∗i,3 and y∗i,4 are the latent variable representations for the number of

trucks and cars owned (yi,3 and yi,4), and x′i is a row vector of exogenous covariates

from Table 1.3. The equation subscript j is omitted from x′i since the same covariates

are used in every equation, and the covariate log(DENSITYi) is separated to empha-

size that it is a variable of interest. The error structure is (εi,1, εi,2, εi,3, εi,4)
′ ∼ N (0,Ω).

The selection variables are the number of trucks and cars a household owns, which

have categories of zero, one, or more than two. Sample selection is modeled as fol-

lows: yi,1 is observed if and only if yi,3 > 0, and yi,2 is observed if and only if yi,4 > 0.

Grouping households that own more than two trucks and cars (2.26% and 4.48% of

the sample, respectively) with households that own two trucks and cars is for estima-

tion convenience, because the transformed cutpoints do not need to be sampled. The

two combined groups are assumed to be similar, so this grouping should not affect

the analysis.

The model estimates are in Table 1.4, and the marginal effects with respect to resi-

dential density are in Table 1.5. The quantities of interest are obtained by iterating

the algorithm 110,000 times, discarding the first 10,000 iterations for burn-in, and

taking the ergodic averages over the associated draws. Prior hyperparameters are

set to reflect non-informativeness since the effects of residential density and other

covariates are not known a priori.

For the truck and car mileage equations, the posterior means for the coefficients of

log(DENSITY ) are −0.41 and −0.25 with posterior standard deviations of 0.32 and

0.23, respectively. The signs suggest that households located in denser neighborhoods,

all else equal, are associated with lower truck and car usage on average. For example,

the marginal effects from Table 1.5 show that a 50% increase in residential density is

associated with a 168.18 and 98 decrease in annual mileage driven with trucks and
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Variable TMILE CMILE TNUM CNUM
Mean SD Mean SD Mean SD Mean SD

log(DENSITY ) -0.41 (0.32) -0.25 (0.23) -0.07 (0.02) -0.02 (0.02)
BIKES -0.16 (0.28) 0.03 (0.20) 0.08 (0.02) -0.01 (0.01)
HHSIZE 0.45 (0.52) 0.73 (0.42) 0.05 (0.03) -0.06 (0.03)
ADLTS -0.63 (0.68) 0.28 (0.53) 0.09 (0.04) 0.17 (0.03)
URB 0.43 (1.48) -0.69 (1.22) -0.14 (0.08) 0.19 (0.08)
INC1 2.53 (1.67) -1.35 (1.02) 0.18 (0.08) 0.09 (0.06)
INC2 1.28 (1.46) 1.15 (0.88) 0.41 (0.07) 0.11 (0.05)
INC3 2.56 (1.49) 1.65 (0.91) 0.49 (0.07) 0.26 (0.06)
INC4 2.60 (1.60) 0.74 (1.01) 0.59 (0.08) 0.24 (0.07)
INC5 3.63 (1.58) 1.86 (0.97) 0.61 (0.08) 0.31 (0.06)
HOME -0.61 (0.90) -1.26 (0.56) 0.21 (0.04) 0.10 (0.04)
HS -0.41 (0.98) 1.28 (0.70) 0.02 (0.05) 0.11 (0.04)
BS -2.04 (1.03) 0.85 (0.71) -0.20 (0.05) 0.17 (0.05)
CHILD1 1.71 (1.45) 0.56 (1.07) 0.12 (0.08) 0.12 (0.07)
CHILD2 1.24 (1.31) 0.61 (0.98) 0.08 (0.07) 0.06 (0.06)
CHILD3 1.32 (1.51) 0.01 (1.07) 0.04 (0.08) -0.02 (0.07)
LA 2.71 (0.99) 1.51 (0.74) -0.14 (0.05) 0.03 (0.05)
SAC 2.09 (1.40) 1.74 (1.03) -0.15 (0.08) 0.07 (0.07)
SD 1.26 (1.42) 0.07 (1.02) -0.18 (0.08) 0.10 (0.07)
SF 1.58 (1.17) -0.06 (0.81) -0.27 (0.06) 0.15 (0.05)

Table 1.4: Model estimates. Posterior means and standard deviations of the coeffi-
cients are reported.

cars, respectively. These estimates are small despite increasing residential density by

as much as 50%. The results suggest that residential density has a small economic

impact on vehicle usage. Also, the differences in magnitudes suggest that less fuel-

efficient vehicles are more sensitive to residential density changes than fuel-efficient

vehicles on average. The results are consistent with the intuition that households

would want to drive less as overall vehicle operating costs increased, which is partic-

ularly true for less efficient vehicles. However, the posterior standard deviations are

close in magnitude to the coefficient estimates, which suggest some uncertainty in the

relationship between residential density and vehicle usage for trucks and cars. This

finding is somewhat contrary to the conclusions in Brownstone and Fang (2009) and

Fang (2008), where the vehicle usage variables are modeled as censored (Tobit-type)
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outcomes instead of potential outcomes. The authors find that residential density

does affect truck utilization in a significant way but not for car utilization. This

difference arises due to the different modeling strategies.

Marginal effects are presented in Table 1.5 since the coefficients in the ordered equa-

tions are difficult to interpret. The estimates suggest that when residential density

increases by 50%, the probability of not holding any trucks increases by 1.318%,

while the probability of holding one and two or more trucks decrease by 0.637% and

0.681%, respectively. The effects on car holdings is practically on the same order of

magnitude, but there is sizable uncertainty in the estimates as the posterior standard

deviations are large. These estimates are similar to the findings in Fang (2008) and

approximately half the size of the estimates in Brownstone and Fang (2009).

∆Pr(TNUM = 0) ∆Pr(TNUM = 1) ∆Pr(TNUM ≥ 2)
13.18 -6.37 -6.81

(3.35) (1.67) (1.72)
∆Pr(CNUM = 0) ∆Pr(CNUM = 1) ∆Pr(CNUM ≥ 2)

2.88 -0.23 -2.64
(2.89) (0.26) (2.65)

∆TMILE ∆CMILE
-168.14 -98.00

(130.70) (93.85)

Table 1.5: Marginal effects of increasing DENSITY by 50%. The changes in prob-
abilities are in 10−3 units, and the changes in truck and car mileage are in annual
miles.

1.6 Concluding remarks

This paper develops an efficient algorithm to estimate sample selection models with

two incidentally truncated outcomes and two separate selection variables. While

such models are easily described mathematically, estimation is often difficult due

to the intricate pattern of missing data that arises with two incidentally truncated

23



www.manaraa.com

outcomes and the discrete nature of the selection variables. These features result

in evaluations of intractable likelihoods, identification issues, and computationally-

inefficient algorithms. This paper extends the Markov chain Monte Carlo algorithm

with minimal data augmentation, first proposed in Chib (2007) and Chib et al. (2009),

to efficiently simulate the joint posterior distribution of interest. A central aspect of

the proposed algorithm is that it includes only a small subset of the total missing

data in the MCMC sampler, resulting in improved sampling efficiency and decreased

computational load, as demonstrated in the simulation study. Also, despite not having

the “complete” data, the resulting sampling distributions are well-known and easy to

sample from.

The model is applied to estimate the effects of residential density on vehicle usage and

holdings in the state of California. Results suggest that large increases in residential

density are not strongly associated with changes in either vehicle utilization or the

probability of holding cars, but are strongly related to changes in truck holdings. This

finding associated with vehicle utilization, especially for truck usage, is contrary to

the literature and demonstrates that the sample selection framework can reveal new

conclusions in the data.
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Chapter 2

Bayesian analysis of multivariate

sample selection models using

Gaussian copulas

2.1 Introduction

This paper applies Bayesian methods to estimate a multivariate sample selection

model that addresses the ubiquitous problem of sample selection. In general, sample

selection occurs when a variable of interest is non-randomly missing for a subset of

the sample, resulting in a sample that is not representative of the desired population.

A well-known application involves analyzing market wages that are only partially

observed, depending on whether the individual is participating in the labor force or

not. If inference is based only on the remaining observed sample, then specification

errors may arise.

A widely used model to address sample selection involves modeling an observed binary
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selection variable, y1, that determines whether a continuous outcome variable, y2, is

missing or observed (Heckman, 1976, 1979a). Because the joint distribution for (y1, y2)

is difficult to specify, the model is often re-parameterized in terms of y∗1 and y2, where

y∗1 is a continuous and latent representation of y1, with the distributional assumption

that (y∗1, y2) ∼ N2(µ,Σ). The joint normality assumption is made to achieve tractable

results and to obtain an explicit measure of dependence between the two variables

through Σ.

Although many variations of this model have been developed and estimated for selec-

tion and outcome variables with different data types (e.g. count, ordered, censored,

etc.) and distributional assumptions, they are often limited to the specific distri-

butions assumed in the corresponding papers or to formulations with only two or

three variables. For example, Terza (1998) studies a univariate count data regres-

sion subject to a binary selection variable, and Boyes et al. (1989) analyzes a binary

regression with a separate binary selection variable. From a Bayesian perspective,

Chib et al. (2009), Greenberg (2007), and van Hasselt (2009) provide analyses for a

single Tobit or binary selection variable. For extensive surveys on other variations of

sample selection models from a non-Bayesian perspective, refer to Vella (1998) and

Greene (2008). However, certain theoretical and applied problems may require either

different distributional assumptions or more dependent variables than these models

and methods can accommodate, which limits the problems that can be studied.

To address these issues, we analyze a flexible multivariate sample selection model

in which the desired marginal distributions are specified by the practitioner. The

multivariate dependence is modeled through a copula function in conjunction with

the specified marginal distributions. A copula, broadly speaking, is a function that

links a multivariate distribution function to its univariate distribution functions with

a particular dependence structure (Sklar, 1959). In other words, there exists a copula
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function C such that F (y1, . . . , yn) = C(F1(y1), . . . , Fn(yn)), where F (y1, . . . , yn) is a

multivariate distribution function with F1(y1), . . . , Fn(yn) as the univariate distribu-

tion functions. This method is particularly useful when F1(y1), . . . , Fn(yn) are known

and F (y1, . . . , yn) is unknown, because the copula provides an alternative representa-

tion of the joint density.

This paper uses Gaussian copulas that are constructed using multivariate normal dis-

tribution functions and a theorem from Sklar (1959). While copulas have been used

extensively in the statistics literature for several decades, their usage in econometrics

has been relatively limited. Early work on copulas include Hoeffding (1940), Fréchet

(1951), and Sklar (1959, 1973), with the latter proving an important theorem that

states all continuous multivariate distribution functions have a unique copula repre-

sentation; the reader is referred to Nelsen (1998) and Zimmer and Trivedi (2005) for

comprehensive treatments on copula theory. For multivariate Gaussian copulas, Lee

(2010) and Pitt et al. (2006) respectively analyze multivariate count data models and

general regression models using Bayesian simulation methods.

Recent work from econometrics pertaining to sample selection and copulas include

Bhat and Eluru (2009), Genius and Strazzera (2008), Lee (1983), Prieger (2000),

Smith (2003), and Zimmer and Trivedi (2006). Lee (1983) does not impose joint nor-

mality on the standard sample selection model but uses a bivariate Gaussian copula

to link the two specified marginal distributions together. Similarly, Prieger (2000)

and Bhat and Eluru (2009) develop a model based on a Farlie-Gumbel-Morgenstern

copula, which only has moderate correlation coverage between the selection and out-

come variables. The remaining authors analyze selection models using variations of

Archimedean copulas, resulting in closed-form expressions that are relatively simple

to estimate. The aforementioned papers on selection models mostly use maximum

likelihood estimation and stay within a bivariate or trivariate structure.
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This paper has two purposes. First, we analyze and estimate a multivariate sample

selection model with p pairs of selection and outcome variables using Gaussian copu-

las, where each variable may be discrete or continuous with any parametric marginal

distribution specified by the practitioner. We thereby move beyond the bivariate or

trivariate structure of the preceding papers to accommodate a larger class of sam-

ple selection models. Second, we show how the Bayesian Markov chain Monte Carlo

(MCMC) simulation methods from Lee (2010) and Pitt et al. (2006) can be applied

to accommodate copula models with missing data. The proposed estimation method

has two main advantages. By using Bayesian simulation methods, it is not neces-

sary to repeatedly compute the high-dimensional copula distribution functions that

are needed with non-Bayesian methods. Even though there are methods to calculate

these distribution functions (Bőrsch-Supan and Hajivassiliou, 1993; Geweke, 1991;

Hajivassiliou and McFadden, 1998; Jeliazkov and Lee, 2010; Keane, 1994), the result-

ing likelihood is difficult to maximize, even for low-dimensional problems (Zimmer

and Trivedi, 2005). Next, our proposed algorithm does not require simulation of the

missing data and their associated quantities, which has been shown to improve the

efficiency of the Markov chain (Chib et al., 2009; Li, 2011). Careful consideration is

needed in this context since the amount and complexity of missing data grow simulta-

neously with the number of variables modeled (e.g. a model with p partially observed

outcomes can have 2p different combinations of missing data for each observation).

The methods are applied to study the effects of residential density on vehicle miles

traveled and vehicle holdings for households in California. Residential density and

household demographic variables are used to explain the number of miles a household

drives with trucks and cars and the number of trucks and cars a household owns.

The rest of the paper is organized as follows. Section 2.2 provides a brief introduc-

tion to copulas, and Section 2.3 describes the proposed multivariate sample selection
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model. Section 2.4 presents the estimation algorithm while Section 2.5 illustrates the

methods on simulated and actual data. The paper is concluded in Section 2.6.

2.2 Copulas

This section provides a brief introduction to copulas. Intuitively, a copula is a func-

tion that links a multivariate joint distribution to its univariate distribution functions.

This approach allows joint modeling of outcomes for which the multivariate distri-

butions are difficult to specify, which is often the case in econometric modeling (e.g.

models for discrete choice, count data, and combinations of discrete and continuous

data).

More formally, a copula C has the following definition from Zimmer and Trivedi

(2005):

Definition 1 An n-dimensional copula (or n-copula) is a function C from the unit

n-cube [0, 1]n to the unit interval [0, 1] which satisfies the following conditions:

1. C(1, . . . , 1, uk, 1, . . . , 1) = uk for every k ≤ n and for all uk in [0, 1];

2. C(u1, . . . , un) = 0 if uk = 0 for any k ≤ n;

3. C is n-increasing

From this definition, a copula can be viewed as an n-dimensional distribution function

for U1, . . . , Un defined over [0, 1]n, where Ui is uniformly distributed over [0, 1] (i =

1, . . . , n).

An important result is that multivariate distribution functions can be expressed in

terms of a copula function and its univariate distribution functions. Let Y1, . . . , Yn
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be n continuous random variables with an n-dimensional distribution function

F (y1, . . . , yn)

and marginal distribution functions F1(y1), . . . , Fn(yn). Then,

F (y1, . . . , yn) = Pr(Y1 < y1, . . . , Yn < yn) (2.1)

= Pr(U1 < F1(y1), . . . , Un < Fn(yn)) (2.2)

= C(u1 = F1(y1), . . . , un = Fn(yn)) (2.3)

since Fi(Yi) ∼ Ui by the integral transformation result. The dependence between

the marginal distributions is introduced through a dependence parameter specific

to the chosen copula function. Note that the copula function in (2.3) is unique if

F1(y1), . . . , Fn(yn) are continuous distribution functions. The relationship in (2.3)

still holds for discrete distributions, but the copula function is not unique.

Although many copulas exist, this paper uses a multivariate Gaussian copula of the

form

C(u1, . . . , un|Ω ) = Φn(Φ−1(u1), . . . ,Φ
−1(un)|Ω ), (2.4)

where Φn(·) is an n-dimensional distribution function for a multivariate normal vector

z with mean zero and correlation matrix Ω, and Φ−1(·) is the inverse distribution

function of a univariate standard normal random variable. Intuitively, the proposed

approach is to transform the original variables with pre-specified margins into uniform

random variables and then into a new set of correlated random variables, z, that is
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distributed N (0,Ω). The advantage of this approach is that dependence is easier to

handle through the transformed data z than through the original or uniform random

variables. From Song (2000), the density for this copula is proportional to

|Ω|−
1
2 exp(0.5 z′(I − Ω−1)z), (2.5)

where zi = Φ−1(ui) (i = 1, . . . , n), and I is an identity matrix with the same dimen-

sions as Ω.

The Gaussian copula has several desirable properties. It is one of the few multivariate

copulas with n(n−1)
2

dependence parameters (the off-diagonals of Ω), one for each pair

of variables. This feature is especially desirable in this context since the dependence

between the selection and outcome variables is of interest. Furthermore, unlike some

copulas, the dependence measures for this copula can be positive or negative. This

property is also attractive as the sign of the dependence between the selection and

outcome variables is not known a priori. Lastly, Gaussian copulas attain the Fréchet

lower and upper bounds when the dependence parameters approach −1 and 1, re-

spectively. This last property is an important factor when choosing a copula and

implies that the Gaussian copula can cover the space between the Fréchet bounds.

2.3 Model

Suppose we have 2p variables with N observations for each. Let the first p variables

denote the selection variables that determine whether the remaining p variables of

interest are observed. Following Pitt et al. (2006), for observational units i = 1, . . . , N
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Variables Case 1 Case 2 Case 3 Case 4
yi,1 X X X X
yi,2 X X X X
yi,3 X © X ©
yi,4 X X © ©

Table 2.1: Four cases of variable observability when p = 2. The symbols © and X
respectively denote whether the variable is missing or observed.

and variables j = 1, . . . , 2p, the proposed model is

yi,j = F−1i,j (Φ(zi,j)), zi = (zi,1, . . . , zi,2p)
′ iid∼ N2p(0,Ω). (2.6)

In equation (2.6), yi,j is a discrete or continuous variable with distribution function

Fi,j(·) that depends on the covariates xi,j and a vector of unknown parameters θi,j.

Also, denote fi,j(·|θi,j) as the density function for yi,j. As an example, if yi,j ∼

N (x′i,jβ, σ
2), then θi,j = (β, σ2), and Fi,j(·) is a distribution function for a normal

random variable with mean x′i,jβ and variance σ2. Furthermore, each yi,j is modeled

with a corresponding Gaussian latent variable zi,j, along with a column vector zi

that is distributed multivariate normal with mean zero and correlation matrix Ω. For

simplicity, let Fi,j(·) = Fj(·), fi,j(·|θi,j) = fj(·|θj), and θi,j = θj for all i and j, which

imply that the j-th distribution function and vector of unknown parameters are the

same across all observational units. For (2.6), it is important to note that the mapping

F−1i,j (Φ(·)) is one-to-one when yi,j is continuous and many-to-one when yi,j is discrete.

Also, for identification reasons, the set of covariates for each selection variable should

include at least one additional covariate than the corresponding variable of interest.

Sample selection is incorporated by assuming that the first p selection variables,

yi,1, . . . , yi,p, are always observed and determine whether the remaining variables of
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interest, yi,p+1, . . . , yi,2p, are missing or observed. That is, yi,1 determines whether

yi,p+1 is missing or observed, yi,2 determines whether yi,p+2 is missing or observed, etc.

This paired sample selection structure implies that for any observational unit i, there

are 2p possible combinations of missing variables. Table 2.1 illustrates the combina-

tions when p = 2. We observe either (yi,1, yi,2, yi,3, yi,4), (yi,1, yi,2, yi,4), (yi,1, yi,2, yi,3),

or (yi,1, yi,2). In the context of the transportation economics application, yi,1 and

yi,2 are the number of trucks and cars the i-th household owns, and yi,3 and yi,4 are

the mileage driven with these vehicles. The mileage variables are missing when the

number of vehicles is zero.

2.4 Estimation

2.4.1 Posterior density and priors

The data-augmented posterior density of interest is proportional to the data-augmented

likelihood multiplied by the prior densities: π(θ,Ω, z| y) ∝ f(z, y|θ,Ω)π(θ,Ω). In this

expression, θ contains θj for all variables, y contains all the observed yi,j variables, and

z contains all the Gaussian latent variables from the copula function corresponding

to y. The form of f(z, y|θ,Ω) will be described in the next subsection. For Bayesians,

this posterior density summarizes all the information available for the unknown pa-

rameters after seeing the data. It combines prior information on the parameters

before seeing data with information from the observed data through the likelihood

function.

We assume independent priors such that π(θ,Ω) = π(θ) π(Ω) for convenience. The

prior for Ω is IW(ν,Q), an inverse-Wishart distribution with scalar hyperparameter

ν and 2p×2p hyperparameter Q. Because θ is application-specific, we will leave prior
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specifications to the practitioner. Note that conjugate priors do not aid tractability

when using copulas in this context. Therefore, we suggest practitioners choose priors

with simple functional forms that accurately reflect prior knowledge and proper priors

if model comparisons with Bayes factors are desired.

2.4.2 Estimation algorithm

The posterior distribution is approximated by MCMC methods, largely following Lee

(2010) and Pitt et al. (2006). For the algorithm that follows, define yj and zj to be

the elements of y and z corresponding to the j-th variable, respectively. Also, let z−j

be z\zj and θ−j be θ\θj. The algorithm to sample from π(θ,Ω, z| y) is summarized

as follows:

1. Sample Ω in one block from f(Ω|z).

2. Sample (θj, zj) jointly for all discrete marginal distributions from

f(θj, zj|y, z−j, θ−j,Ω)

as follows

(a) Sample θj without zj from f(θj|y, z−j, θ−j,Ω).

(b) Sample zj conditioned on θj from f(zj|y, z−j, θ,Ω).

3. Sample θj for all continuous marginal distributions from f(θj|y, z−j, θ−j,Ω) and

solve for zj with yj and θj through the one-to-one transformation in (2.6).

The Metropolis-Hastings algorithm is used to sample from the preceding distribu-

tions since random draws cannot be easily obtained from the posterior distribution
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using direct sampling. Broadly speaking, this algorithm generates samples from the

posterior distribution by first proposing candidate values from a known proposal dis-

tribution and then accepting them with a certain probability. If a proposed value is

rejected, then the previous value is used. This method constructs a Markov chain

such that after a sufficient burn-in period, the draws can be shown to come from the

posterior distribution of interest by Metropolis-Hastings convergence results (Chib

and Greenberg, 1995; Tierney, 1994) as the number of iterations approaches infinity.

A multivariate t proposal distribution with mean µ, scale matrix V , and degrees of

freedom ν is used in the subsequent sections. In order to obtain parameter values

such that this proposal density dominates the density of interest (also called the

target density), µ and V are set to the maximum and inverse of the negative Hessian

(evaluated at the maximum) of the density of interest, respectively. These quantities

can be obtained by quasi-Newton methods. Lastly, the degrees of freedom parameter

ν is set to ensure heavy tails. Specific details are provided in the subsequent sampling

sections.

Note that the missing variables of interest (e.g. the entries marked with a © in

Table 2.1) and their corresponding Gaussian latent variables are not sampled. In

many Bayesian MCMC algorithms for missing data problems, the missing data are

often included in the sampling to facilitate the tractability of the sampling densities,

however this strategy is not necessary and not always optimal. Chib et al. (2009)

and Li (2011) have shown that the inclusion and conditioning of missing data in some

applications can slow down the mixing of the Markov chain. In particular, for the

semiparametric sample selection model of Chib et al. (2009), the inefficiency factors

(a measure of how quickly the autocorrelations in a Markov chain chain taper off,

where lower values indicate better performance) are at least 4 times greater when

the missing data due to sample selection are included in the sampler. This issue
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is particularly problematic when the quantity of missing outcomes due to sample

selection is large or when the model includes many parameters, both of which may

be the case in this context. Therefore, the proposed algorithm does not sample the

missing data and corresponding latent data.

Sampling Ω

Two different algorithms are presented to sample Ω. The first algorithm is based

on the sampler from Chib and Greenberg (1998); it works well when the number of

variables is small (less than 4) and is easy to implement. For problems with more

than 4 variables, we introduce an algorithm based on Chan and Jeliazkov (2009).

Since the observed variables can potentially change for every observational unit, ad-

ditional notation will now be defined. Let si denote the indices of the observed vari-

ables for observation i, and let ysi and zsi respectively denote the columns of observed

and latent variables corresponding to si such that V ar(zsi) = Ωsi . For example, if

yi,1, yi,2, and yi,4 are observed for p = 2, then si = {1, 2, 4}, ysi = (yi,1, yi,2, yi,4)
′,

zsi = (zi,1, zi,2, zi,4)
′, and

Ωsi =


1 ω12 ω14

ω21 1 ω24

ω41 ω42 1

 .

The full conditional density f(Ω|z) is proportional to

f(z|Ω)π(Ω) ∝ π(Ω)
N∏
i=1

{
|Ωsi |−

1
2 exp(−0.5 z′siΩ

−1
si
zsi)
}
. (2.7)
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Since Ω is a 2p× 2p correlation matrix, there are 2p(2p−1)
2

unique off-diagonal terms,

denoted by ω, that need to be sampled. To sample ω from (2.7), a Metropolis-

Hastings step with a multivariate t proposal is used. The target density in (2.7) is

first maximized with respect to ω using quasi-Newton methods; let ω̂ and V̂ denote the

maximizing vector and the inverse of the negative Hessian evaluated at the maximum.

Next, propose ω′ from a multivariate t distribution with mean vector ω̂, scale matrix

V̂ , and degrees of freedom ν. A proposed value for Ω′ can now be constructed with ω′.

If Ω′ is not positive definite, then the previous value of Ω is used instead. Otherwise,

the draw is accepted with probability

α(ω, ω′) = min

{
1,
f(Ω′|z)fT (ω|ω̂, V̂ , ν)

f(Ω|z)fT (ω′|ω̂, V̂ , ν)

}
. (2.8)

The second algorithm is based on the sampling strategy from Chan and Jeliazkov

(2009). To introduce the technique, note that any positive definite covariance matrix

Σ can be decomposed as Σ = L′D−1L. The unit lower triangular matrix L contains

ones on the diagonal and unrestricted elements on the lower off-diagonal, while the

diagonal matrix D contains positive elements on the diagonal and zeros elsewhere.

The insight of this algorithm is that we can sample the elements in L and D instead

of the elements in Σ directly and reconstruct Σ through the decomposition.

Using similar notation to Chan and Jeliazkov (2009), denote λj (j = 1, . . . , 2p) as the

diagonal elements of D and aj,k (1 ≤ k < j ≤ 2p) as the unrestricted elements on the

lower off-diagonal of L. Similarly, denote aj,k as the (j, k)-th element of L−1. As an
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illustration,

D =



λ1 0 . . . 0

0 λ2 . . . 0

...
...

. . .
...

0 0 . . . λ2p


, L =



1 0 0 . . . 0

a2,1 1 0 . . . 0

a3,1 a3,2 1 . . .
...

...
...

...
. . .

...

a2p,1 a2p,2 . . . . . . 1


.

Let σj,k denote the element of Σ corresponding to the j-th row and k-th column.

After imposing σ1,1 = σ2,2 = . . . = σ2p,2p = 1 in Σ to obtain correlation form and

expanding L′D−1L, the free elements of Σ must satisfy the constraints

σj,k = aj,kλk +
k−1∑
h=1

aj,hak,hλh, 1 ≤ k < j ≤ 2p, (2.9)

and λj must satisfy

λ1 = 1, (2.10)

λj = 1−
j−1∑
k=1

(aj,k)2λk, j = 2, . . . , 2p. (2.11)

As noted in the referenced paper, when Σ is in correlation form, {λj} is only a function

of {aj,k}. This implies that the off-diagonal elements in {σj,k} are also functions of

{aj,k} only. Consequently, we only need to sample {aj,k} when Σ is expressed as

L′D−1L.

The second algorithm will also utilize a Metropolis-Hastings step since (2.7) is not

a recognizable distribution with respect to {aj,k}. First, decompose Ω as L′D−1L
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and express (2.7) in terms of {aj,k} analogously to (2.9) through (2.11). Let â and

Â respectively denote the values that maximize (2.7) with respect to a = {aj,k : 1 ≤

k < j ≤ 2p} and the inverse of the negative Hessian evaluated at the maximum.

Next, propose a′ from a multivariate t distribution with mean â, scale matrix Â, and

degrees of freedom ν, which can be used to construct the proposed value Ω′. The

proposed value is accepted with probability

α(a, a′) = min

{
1,
f(Ω′|z)fT (a|â, Â, ν)

f(Ω|z)fT (a′|â, Â, ν)

}
. (2.12)

This approach differs slightly from the one in Chan and Jeliazkov (2009) since (2.7)

is of a different form due to the missing data.

Both of these algorithms allow Ω to be sampled in one block with the positive definite

constraint intact. The first algorithm is relatively easy to implement, however it is

generally inefficient when the dimension of Ω is large. The positive definite constraint

will become increasingly difficult to satisfy when p increases, resulting in proposed

values that are frequently rejected and slower mixing of the Markov chain. The second

algorithm is more involved but has been shown to be efficient (Chan and Jeliazkov,

2009), therefore it is recommended for models with more than 4 variables.

Sampling (θj, zj) for discrete marginals

For discrete marginals, the pair (θj, zj) is sampled jointly. Using the method of

composition, θj is first sampled from f(θj|y, z−j, θ−j,Ω), then zj is sampled from
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f(zj|y, z−j, θ,Ω) with θj conditioned on. The first density is

f(θj| y, z−j, θ−j,Ω) ∝ π(θj|θ−j)
N∏
i=1

{f(yi,j| z−j, θj,Ω)}I(j∈si), (2.13)

where

f(yi,j| z−j, θj,Ω) =

∫
f(yi,j|zi,j, θj)f(zi,j|z−j,Ω) dzi,j, (2.14)

and I(A) is an indicator function that takes the value 1 when A is true and 0 otherwise.

Upon defining µi,j|−j and σ2
i,j|−j as the conditional mean and variance of the normal

density f(zi,j|z−j,Ω), it can be shown that

f(yi,j| z−j, θj,Ω) = Φ

(
TU − µi,j|−j

σi,j|−j

)
− Φ

(
TL − µi,j|−j
σi,j|−j

)
, (2.15)

with

TL = Φ−1(Fj(yi,j − 1)), (2.16)

TU = Φ−1(Fj(yi,j)). (2.17)

The sampling of θj can proceed with the target density in (2.13) and a Metropolis-

Hastings step just like the preceding sections.
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Now, the density for zi,j is

f(zi,j|y, z−j, θ,Ω) ∝ f(yi,j|zi,j, θj)f(zi,j|z−j,Ω), (2.18)

where

f(yi,j|zi,j, θj) = I(TL < zi,j ≤ TU).

Thus, for any j ∈ Si that corresponds to a discrete yi,j,

zi,j|y, z−j, θ,Ω ∼ T N (TL,TU )(µi,j|−j, σ
2
i,j|−j), (2.19)

where T N (a,b)(µ, σ
2) denotes a univariate normal distribution with mean µ and vari-

ance σ2 truncated to the region (a, b). Note that the conditional moments depend on

which latent variables from z−j are available for observation i, indicated by si, and

need to be adjusted accordingly.

Sampling θj for continuous marginals

For continuous marginal distributions, θj is sampled from f(θj|y, z−j, θ−j,Ω). The

sampling density is proportional to

π(θj|θ−j)
N∏
i=1

{f(yi,j|θj)}I(j∈Si) exp(0.5 z′Si
(ISi
− Ω−1Si

)zSi
). (2.20)
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Note that the elements in zSi
corresponding to the j-th variable are also functions of θj,

so the last term cannot be dropped. This is from the relationship zi,j = Φ−1(Fj(yi,j)),

where Fj(yi,j) depends on θj. A Metropolis-Hastings step is needed to obtain a draw

from (2.20). Once θj is drawn, the elements in zj can be recovered through the

aforementioned relationship, therefore zj does not need to be sampled for continuous

marginals.

2.5 Applications

2.5.1 Simulated data

This section illustrates the estimation methods with simulated data. The purpose

is to study the performance of the algorithm on a model that will be used in the

next subsection and to demonstrate that the algorithm can correctly recover the

parameters of interest. Specifically, the model from Section 2.3 is estimated with

two Poisson selection variables (yi,1 and yi,2) and two normally-distributed outcome

variables (yi,3 and yi,4). To set the context, sample selection is incorporated as follows:

yi,3 is observed if and only if yi,1 > 0, and yi,4 is observed if and only if yi,2 > 0.

For i = 1, . . . , 1000, we have the following

yi,1 ∼ Po(λi,1), log(λi,1) = x′i,1β1, (2.21)

yi,2 ∼ Po(λi,2), log(λi,2) = x′i,2β2,

yi,3 ∼ N (x′i,3β3, σ
2
3),

yi,4 ∼ N (x′i,4β4, σ
2
4),
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where x′i,j (j = 1, . . . , 4) are randomly-drawn exogenous covariate vectors from stan-

dard normal distributions. The true generating values for the parameters of interest

θ1 = β1, θ2 = β2, θ3 = (β3, σ
2
3), θ4 = (β4, σ

2
4), and Ω are presented in Table 2.2. The

percentage of missing data for each outcome variable is 20%, similar to the real data.

Proper priors are used with hyperparameters that reflect non-informativeness. For

θ1 and θ2, multivariate normal priors are used with mean vector zero and a variance-

covariance matrix of an identity matrix multiplied by 100; similar priors are used for

β3 and β4. Lastly, inverse gamma priors are used for σ2
3 and σ2

4.

The algorithm is iterated 5,000 times with 500 iterations discarded for burn-in. Table

2.2 reports the posterior means and standard deviations along with their true gen-

erated values, and Figure 2.1 illustrates the lagged autocorrelations for a randomly-

chosen parameter β1,3 up to order 40. In general, the results from Table 2.2 suggest

that all the parameters have been estimated well since the posterior means are reason-

ably close to their generated values with tight standard deviations. Furthermore, the

autocorrelation plot, a way of assessing how well the Markov chain mixes, suggests

that our algorithm performs well. The autocorrelations for β1,3 decrease and taper

off around lag 40, as do most of the autocorrelations for the remaining parameters.

However, we suggest iterating the algorithm at least 15,000 times to obtain more

precise results.

2.5.2 Vehicle usage in California

The model from (2.21) is applied to analyze the effects of residential density on

household vehicle usage in California. A sample selection framework is utilized since

vehicle usage is non-randomly missing from the sample data with a probability that

depends on whether the household owns a vehicle or not. Households may be selecting
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Parameter Generated value E(·|y) Std(·|y)
β1,1 0.30 0.31 0.06
β1,2 0.30 0.28 0.05
β1,3 0.30 0.30 0.04
β1,4 0.30 0.31 0.05
β1,5 0.30 0.30 0.04
β2,1 0.20 0.20 0.06
β2,2 0.20 0.17 0.05
β2,3 0.20 0.23 0.05
β2,4 0.20 0.19 0.05
β2,5 0.20 0.21 0.05
β3,1 0.50 0.81 0.23
β3,2 0.50 0.54 0.07
β3,3 0.50 0.40 0.06
β3,4 0.50 0.44 0.07
σ2
3 3.00 2.79 0.16

β4,1 0.30 0.30 0.16
β4,2 0.30 0.35 0.05
β4,3 0.30 0.38 0.05
σ2
4 2.00 1.92 0.10

ω2,1 0.28 0.25 0.04
ω3,1 0.28 0.27 0.03
ω3,2 0.28 0.27 0.04
ω4,1 0.28 0.31 0.04
ω4,2 0.28 0.28 0.04
ω4,3 0.28 0.27 0.04

Table 2.2: Posterior means and standard deviations for θj (j = 1, . . . , 4) and
vech(Ω) = (ω2,1, ω3,1, ω3,2, ω4,1, ω4,2, ω4,3).

themselves into being vehicle owners for unobserved reasons that also affect how much

they drive, creating differences in the observed and unobserved samples. Therefore,

sample selection must be accounted for.

Some studies suggest that certain changes in urban spatial structure (e.g. residential

density) may be effective in reducing fuel consumption of automobiles or in influencing

travel behavior (Brownstone and Fang, 2009; Brownstone and Golob, 2009; Cervero

and Kockelman, 1997; Dunphy and Fisher, 1996; Fang, 2008). For example, it may

be more costly to maneuver around a location with higher residential density due
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Figure 2.1: Autocorrelation plot for β1,3.

to increased congestion and time spent in searching for parking spaces, resulting in

households driving less and switching to more fuel efficient vehicles. Consequently,

understanding this potential relationship can provide alternative policies to control

fuel consumption and congestion.

The dataset is from the 2001 National Household Travel Survey. It contains the daily

and long-distance travel information between April 2001 and May 2002 for approxi-

mately 66,000 households across the nation, along with variables such as residential

density, household size, residential location type, income, education, and other house-

hold characteristics. The dataset used contains 1,000 randomly-sampled households

that reside in California. The primary variables of interest are the number of trucks

and cars owned by the household (yi,1 and yi,2) and the corresponding annual mileage

driven with these vehicles (yi,3 and yi,4), where 20% to 30% of the mileage variables

are missing. A truck is defined as a van, sports utility vehicle, or pickup truck,

and a car is an automobile, car, or station wagon. These two categories have dis-

tinct differences in miles per gallon (MPG) requirements by the Corporate Average
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Fuel Economy (CAFE) standards. Covariates of interest include residential density

(housing units per square mile at the census block level), household size, and dummy

variables representing whether the household resides in an urban location, is low in-

come, has a young child, and owns their home. Descriptive statistics are summarized

in Table 2.3.

Variable Description Mean SD
Dependent variables

Tnum Number of trucks owned by the household 0.72 0.79
Cnum Number of cars owned by the household 1.10 0.82
Tmile Mileage per year driven with trucks (10,000 miles) 0.71 1.10
Cmile Mileage per year driven with cars (10,000 miles) 0.89 1.00

Exogenous covariates
Density Houses per square mile 2564.99 1886.09
Hhsize Number of individuals in a household 2.69 1.44
Urb Household is in an urban area 0.93 0.25
Lowinc Household income is between 20K and 30K 0.11 0.31
Child Youngest child is under 6 years old 0.17 0.37
Home Household owns the home 0.26 0.44

Table 2.3: Descriptive statistics based on 1,000 observations.

The results are presented in Tables 2.4 and 2.5. From Table 2.4, the estimated cor-

relation between the truck equations is 0.37, suggesting that sample selection is not

ignorable for these vehicles. This relationship is due to positive associations in unob-

served factors that affect both truck ownership and utilization (e.g. a predisposition

to travel more in spacious vehicles like trucks). On the other hand, the estimated

correlation for the car equations is negligible and suggests that selection may not be

an issue in this case.

1.00 -0.41 0.37 -0.02
-0.41 1.00 -0.17 -0.02
0.37 -0.17 1.00 0.01

-0.02 -0.02 0.01 1.00

Table 2.4: Posterior means for Ω
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Tnum Cnum Tmile Cmile
Covariates Mean SD Mean SD Mean SD Mean SD

log(Density) -0.06 0.03 0.21 0.09 -0.01 0.26 0.05 0.17
Hhsize 0.09 0.05 0.12 0.61 0.15 0.23 0.09 0.16

Urb -0.52 0.55 0.43 0.49 -0.13 1.13 -0.15 0.90
Lowinc -0.23 0.58 -0.35 0.41 0.20 0.93 -0.07 0.74

Child 0.10 0.37 -0.24 0.32 0.10 0.78 -0.09 0.56
Home 0.26 0.27 0.34 0.20 · · · ·

Table 2.5: Posterior means and standard deviations of β1, β2, β3, and β4.

The estimates in Table 2.5 suggest that the effect of residential density on vehicle

usage is uncertain. The posterior standard deviations are large relative to the means,

and the 95% probability intervals for these parameters contain 0 (not shown in the

table). This result is consistent with the findings of Li (2011) in which a multivariate

sample selection model is also used to analyze a similar application. However, this

conclusion differs from the ones presented in Fang (2008) and Brownstone and Golob

(2009), where these authors generally find evidence for negative associations between

truck usage and residential density. This difference arises due to the usage of a sample

selection model and different distributional assumptions.

On the other hand, there is evidence that households residing in denser neighborhoods

tend to own fewer trucks and more cars. This can be attributable to the increased

costs of operating vehicles with lower fuel efficiency in these areas, resulting in pref-

erences for cars with better fuel economy. Also, larger households tend to have more

trucks, presumably because these vehicles can fit more passengers.

2.6 Concluding Remarks

This paper analyzes a multivariate sample selection model with p pairs of selection

and outcome variables. A unique feature of this model is that the variables can be
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discrete or continuous with any parametric distribution, resulting in a large class of

multivariate selection models that can be accommodated. For example, the model

may involve any combination of variables that are continuous, binary, ordered, or

censored. Although the joint distribution can be difficult to specify, a multivariate

Gaussian copula function is used to link the marginal distributions together and

handle the multivariate dependence. The proposed estimation approach relies on

the MCMC-based techniques from Lee (2010) and Pitt et al. (2006) and adapts the

preceding methods to a missing data setting. An important aspect of this algorithm

is that it does not require simulation of the missing outcomes, which has been shown

in some cases to improve the mixing of the Markov chain. The methods are applied

to both simulated and real data, and the results show that the algorithm works well

and can reveal new conclusions in the data.

A copy of the Matlab code to estimate the model in the real data section is available

upon request.
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Chapter 3

A model for broad choice data

3.1 Introduction

Discrete choice models are immensely popular in empirical work. Among the numer-

ous applications, they are used to study the choices made by individuals for trans-

portation modes, social interactions, recreational activities, and residential locations.

However, these models may not be directly applicable when there are issues with data

observability. As an illustration, suppose that it is of interest to model a household’s

vehicle choice at the make-model-trim level (e.g. the choice set contains a Honda

Civic LX, Honda Civic Hybrid, Toyota Camry LE, and Toyota Camry XLE Hybrid)

but only choice data up to the make-model level (e.g. either Honda Civic or Toyota

Camry) are observed. In this case, standard discrete choice models cannot be used,

because the chosen vehicle from the desired choice set is not observed.

A new model to accommodate the aforementioned situation is studied in this paper.

Specifically, this paper analyzes a discrete choice model where the observed outcome

is not the exact alternative chosen by a decision maker (e.g. the Civic Honda LX)
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but rather the broad group of alternatives in which the chosen alternative belongs

to (e.g. the group of Honda Civics). I refer to this as the model for broad choice

data, because the observed data only broadly represent the exact choices made by

the decision makers.

Although this issue with data observability is acknowledged in the literature, it is

often circumvented by redefining the choice set of interest so that standard methods

can be applied. For example, instead of modeling the vehicle choices at the lower

make-model-trim level, the choices at the higher make-model level are modeled. To

accommodate this redefined setting, the observable attributes used in the model are

either aggregated or averaged over the members of the broad groups prior to estima-

tion. However, a major drawback of using the aggregate or average attributes is that

they result in loss of precision for the parameter estimates when the group members

are not homogenous with respect to their attributes. Since attributes within groups

are commonly heterogenous, this approach is problematic. For example, the mileage

per gallon, engine size, and maintenance cost attributes can significantly differ be-

tween hybrid and non-hybrid vehicles within the same make-model group. As such,

the model for broad choice data is useful, because it is uses disaggregated data and

analyzes a richer choice set structure.

The paper proceeds as follows. The model for broad choice data is formally stated in

Section 3.2, and the likelihood-based quantities are derived in Section 3.3. Using the

quantities from the preceding section, Section 3.4 discusses the identification issues

associated with using the broad choice data. The details for maximum likelihood

and Bayesian estimation of the parameters are discussed in Section 3.5, and Section

3.6 illustrates the various estimators on simulated data. Concluding remarks are in

Section 3.7.
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3.2 Model for broad choice data

The model specification is similar to that of a multinomial logit model and is based

on random utility theory. Formally, the model is expressed as

U∗ij = δj + x′ijβ + εij, εij
i.i.d.∼ Type 1 Extreme Value, (3.1)

Y ∗i = j if U∗ij > U∗ik ∀ k ∈ C = {1, 2, . . . , J}, (3.2)

Yi = m if Y ∗i ∈ Cm, (3.3)

for decision makers i = 1, . . . , N , alternatives j = 1, . . . , J , and groups m =

1, 2, . . . ,M .

The latent utility that decision maker i obtains from alternative j is given by U∗ij in

(3.1). It is a function of an “average” level of utility that is constant for alternative

j across all decision makers, δj, a column vector of K exogenous and observable

attributes, xij, a column vector of unknown coefficients, β, and an unobserved error

term, εij, that is distributed i.i.d. Type 1 Extreme Value. For identification purposes,

the average utility for the first alternative is normalized to zero (i.e. δ1 = 0). Choosing

the first alternative for the normalization is inessential, as long as there is at least

one such normalization.

In (3.2), the random variable Y ∗i denotes the exact alternative chosen by decision

maker i from the choice set C. The decision maker chooses alternative j if it provides

the most utility among all the alternatives from the choice set. In (3.3), the variable

Yi represents the broad group of alternatives that Y ∗i is from. To be more specific

about the values that Yi can take, decompose each decision maker’s choice set into

M groups such that C =
⋃M
m=1Cm and

⋂M
m=1Cm = ∅. Then, Yi equals the value m
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if the exact alternative chosen belongs to Cm.

An important aspect of this paper is that only the outcomes for Yi (and not Y ∗i ) are

observed. I refer to the observed outcomes for Yi as the broad choice data, because

they only broadly represent the exact choices made by the decision makers. For the

running example, the choice set is partitioned into two groups. The first group, C1,

contains the two Honda Civics, and the remaining group, C2, contains the two Toyota

Camrys. The exact vehicle chosen by the household from C is not observed. Instead,

we only observe either a 1 or 2, or equivalently, whether the exact vehicle chosen is a

type of Honda Civic or Toyota Camry.

For the remainder of the paper, I refer to (3.1) to (3.3) as the model for broad choice

data. Also, I refer to (3.1) to (3.2) with Y ∗i observed for all decision makers as the

model for exact choice data; this model is usually referred to as the multinomial logit

model in the literature. It is important to emphasize that the two models are equiv-

alent when each group contains only a single alternative. To see their equivalence,

note that Yi is equal to Y ∗i for all decision makers when |Cm| = 1 for all groups, thus

the two models are identical in this case.

3.3 Likelihood function and associated quantities

This section discusses the likelihood function of the sample, score function, and Hes-

sian matrix of the log-likelihood function for the model with broad choice data. The

Hessian matrix is simple and provides insight into the likelihood function. It is also

useful for the discussions on identification, information loss, and estimation in the

subsequent sections.

Before discussing the likelihood function, some additional notation is needed. Define
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δ = (δ2, δ3, . . . , δJ)′, and let θ = (δ′, β′)′ be the parameter vector with G = J − 1 +K

elements. Also, define wij = (z′j, x
′
ij)
′, where zj is a column vector of zeros and ones

such that w′ijθ is equal to the right hand side of the latent utility in (3.1). Intuitively,

these vectors select out the appropriate average utility in θ for U∗ij. As an illustration,

with the δ1 = 0 normalization,

z1 =


0

0

0

 , z2 =


1

0

0

 , z3 =


0

1

0

 , and z4 =


0

0

1

 (3.4)

when J = 4. In general, there are J such vectors with J − 1 elements in each. They

do not depend on i, because the composition of average utilities in (3.1) does not vary

across decision makers.

The specifications from (3.1) to (3.3) imply that Yi takes a value of m when one of the

alternatives in group m provides the highest level of utility among the alternatives

in C. Since we do not observe the exact choice, the probability of observing Yi = m

is equal to the probability that any alternative in Cm may be the utility-maximizing

alternative. Because these events are disjoint, this probability is equal to

P̃im = Pr(Yi = m), (3.5)

= Pr(Y ∗i ∈ Cm), (3.6)

=
∑
c∈Cm

Pic, (3.7)
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where each probability within the summation is of the logit probability form

Pic = Pr(Y ∗i = c) =
exp (w′icθ)∑J
j=1 exp (w′ijθ)

. (3.8)

The log-likelihood function of the sample is expressed as

LB(θ) =
N∑
i=1

M∑
m=1

Yim log(P̃im), (3.9)

where Yim equals one if the outcome for decision maker i is equal to m and zero

otherwise. The subscript B denotes a quantity corresponding to the model with

broad choice data.

Differentiation of (3.9) with respect to θ yields the score function

SB(θ) =
∂LB(θ)

∂θ
=

N∑
i=1

(
M∑
m=1

Yim
∑
c∈Cm

wicPic|Cm −
J∑
j=1

wijPij

)
, (3.10)

where

Pic|Cm =
exp (w′icθ)∑

s∈Cm
exp (w′isθ)

, (3.11)

and the Hessian matrix of the log-likelihood function

HB(θ) =
∂LB(θ)

∂θ∂θ′
= L− F, (3.12)
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Figure 3.1: Log-likelihood functions with respect to a scalar parameter. The function
corresponding to exact choice data is concave everywhere, but the one for broad choice
data is not globally concave.

where

L =
N∑
i=1

(
M∑
m=1

Yim
∑
c∈Cm

(wic −
∑
s∈Cm

Pis|Cmwis)Pic|Cm(wic −
∑
s∈Cm

Pis|Cmwis)
′

)
, (3.13)

and

F =
N∑
i=1

(
J∑
j=1

(wij −
J∑
r=1

Pirwir)Pij(wij −
J∑
r=1

Pirwir)
′

)
. (3.14)

The quantity in (3.11) is interpreted as the probability of decision maker i choosing

alternative c ∈ Cm when the choice set is restricted Cm. The derivations for the

preceding quantities are given in the Appendix.
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The analogous quantities for the model with exact choice data, which are denoted

with the E subscript, are given in McFadden (1973). The log-likelihood function of

the sample is LE(θ) =
∑N

i=1

∑J
j=1 Y

∗
ij log(Pij), where Y ∗ij equals one if j is the exact

alternative chosen by decision maker i and zero otherwise. The Hessian matrix of the

log-likelihood, HE(θ), is equal to −F .

There are two important characteristics of HB(θ) to emphasize. The first is that

HB(θ) is not generally negative semidefinite. To see this, note that L and F are both

positive semidefinite since they are equal to weighted moment matrices of the observed

attributes, but the Hessian matrix, which is equal to the difference between these two

matrices, does not need to be negative semidefinite. Hence, LB(θ) is generally not

concave over the entire range of θ. On the other hand, McFadden (1973) shows that

HE(θ) is negative semidefinite, so LE(θ) is concave in θ. Figure 3.1 confirms the

shapes of the two log-likelihood functions for observed data with respect to a scalar

parameter. Second, due to observing the broad choices instead of the exact choices,

LB(θ) generally has less curvature than LE(θ). Both Figures 3.1 and 3.2 illustrate

this fact. The diminished curvature has consequences on the identification of the

parameters, which is discussed in the subsequent section.

3.4 Identification

Identification is assessed by analyzing whether the information matrix is nonsingular.

The results in this section utilize Theorem 1 from Rothenberg (1971). Using the

notation from the previous section, the theorem states that θ is locally identified if

and only if the information matrix IB(θ) = −E(HB(θ)) is nonsingular, or equivalently,

has rank G (the number of elements in θ).
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The information matrix corresponding to (3.9) is equal to

IB(θ) = −E(HB(θ)), (3.15)

= F − IL, (3.16)

= IE(θ)− IL, (3.17)

where F = IE(θ) from McFadden (1973), and

IL =
N∑
i=1

(
M∑
m=1

P̃im
∑
c∈Cm

(wic −
∑
s∈Cm

Pis|Cmwis)Pic|Cm(wic −
∑
s∈Cm

Pis|Cmwis)
′

)
. (3.18)

This derivation is discussed in the Appendix. The expression for the information

matrix in (3.17) has an intuitive form: it is equal to the difference between the

information matrix with exact choice data and IL. Loosely speaking, when viewed

asymptotically, IL quantifies “information loss” from using broad choice data instead

of exact choice data, in the sense that IL = IE(θ) − IB(θ) is positive definite unless

IE(θ) = IB(θ). By analyzing (3.18), the main factors that determine IL are the

observed attributes, choice probabilities, and most importantly, the sizes of the groups

which determine the number of outer products being summed in (3.18).

I will discuss identification of the parameters using the information matrix for three

distinct cases. The first case corresponds to each group having only one alternative

(i.e. |Cm| = 1 for all groups) which results in the model for exact choice data. It

is well known that θ is identified when wij varies across alternative sets and is not

collinear with the other attribute vectors (McFadden, 1973). Also, as expected, IB(θ)

reduces to IE(θ) in this case. To see this, let tm be the only element in Cm, which
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implies that Pis|Cm = 1 for all s ∈ Cm. Then,

IL =
N∑
i=1

(
M∑
m=1

P̃im(witm − witm)(witm − witm)′

)
, (3.19)

= 0(G×G),

where 0(G×G) denotes a G×G matrix of zeros, and thus IB(θ) = IE(θ).

The second case, presumably the most typical with broad choice data, occurs when

the sizes of the groups are strictly less than J . For this case, θ is locally identified,

because given the aforementioned assumptions on wij, the information matrix is full

rank. It is interesting to note that IL is rank deficient since it has at most rank G−M ,

but subtracting it from IE(θ) does not decrease the rank of IE(θ). Local identification

is achieved from the nonlinearities in the distributional form, log-likelihood function,

and Hessian matrix with respect to the parameters and observable attributes. Global

and non-parametric identification are not analyzed in this paper and are topics for

future research.

Although θ is locally identified in the second case, there are scenarios in which the

broad choice data do not contain much information about the parameters, leading to

either imprecise estimates during estimation or a nearly singular information matrix.

As alluded to earlier, the amount of information in (3.15) about θ decreases as the

sizes of the groups increase. One extreme scenario in the second case occurs when

there are a large number of alternatives and the size of a particular group is close

to the size of C. For these group configurations, IL is “close” to IE(θ), and the

information matrix is nearly singular, leading to weak identification of θ. By weak

identification, I mean that although θ is locally identified, the information matrix is

close to being singular. This is consistent with Figure 3.2 which depicts that, when
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Figure 3.2: Log-likelihood functions with respect to a scalar parameter. The function
corresponding to the broad choice data is almost flat.

a particular group is close in size to C, LB(θ) is almost flat relative to LE(θ) with

respect to a scalar parameter.

The third case occurs when there is a single group that is equal to C in size, or

equivalently, when every observed outcome for the broad choice data corresponds

to the entire choice set. When this case occurs, θ is not identified, because the

information matrix is rank deficient. To see this, assume that m = M = 1, which

implies that Cm = C, P̃im = 1 for all decision makers and groups, and Pis|Cm = Pis

for all s ∈ C and decision makers. Then

IL =
N∑
i=1

(∑
c∈C

(wic −
∑
s∈C

Piswis)Pic(wic −
∑
s∈C

Piswis)
′

)
, (3.20)

= IE(θ), (3.21)
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and therefore IB(θ) = 0(G×G) is rank deficient. This result establishes that only

knowing a decision maker’s choice belongs to the full choice set is not sufficient to

discern the possible values of θ.

3.5 Estimation

This section describes maximum likelihood (ML) and Bayesian estimation of θ. Through-

out the entire discussion, I assume the second case mentioned in Section 3.4 which

implies that θ is at least locally identified. But for scenarios in which the broad

choice data are not informative about θ (see Section 3.4 for an example), I propose

incorporating additional information in the form of population market shares into the

problem.

For ML estimation, the market share information is implemented as constraints on θ.

To begin the discussion, assume that the population market shares for alternatives

2 through J are known. These market shares, denoted by sj for j = 2, 3, . . . , J ,

are defined as the percentage shares of the population choosing each alternative.

They are collectively denoted by s and are related to the parameters by the nonlinear

market share constraints N−1
∑N

i=1 Pij = sj for j = 2, 3, . . . , J . The population shares

are informative for the parameters, because for a well-specified model, the predicted

market shares from a large representative sample should equal the population shares

on average. In other words, the predicted market shares are unbiased and consistent

estimates for the population market shares.

There are two important assumptions concerning these constraints. The first is that

the predicted in-sample market shares, N−1
∑N

i=1 Pij, must equal the population mar-

ket shares. As mentioned earlier, this assumption should be met for a well-specified

60



www.manaraa.com

model with a large representative sample on average, but equality in small samples

is uncertain. The second assumption is that the population market shares are known

with certainty and hence fixed. This assumption may not always hold as the popula-

tion market shares may be measured with error or only known with a certain degree

of certainty to the researcher. But for the purposes of ML estimation, I assume that

these assumptions are not violated.

To account for possible violations in the two preceding assumptions, I propose using

Bayesian methods. In contrast to the ML methods, the proposed Bayesian methods

formally account for the uncertainty in the market shares, and they do not strictly

enforce the constraints onto the parameters. Instead, the constraints, which contain

information for θ through the market shares, are only used to construct an informative

prior for θ. As a result, the prior can be used to indirectly reflect uncertainty for these

constraints or equivalently for the two preceding assumptions. This is discussed in

subsequent sections.

In summary, for each estimation method, I discuss how it can be implemented with

or without incorporating information from the market share. Because the former case

is relatively non-standard, a majority of the discussion is dedicated to it.

3.5.1 Maximum likelihood estimation

To enforce the constraints in an ML estimation routine, I use a result from Berry

et al. (1995). They proved that, conditional on β and s, the constraints are one-

to-one mappings that relate δ to s and β. Thus, assuming that the constraints can

be inverted to solve for δ as a function of β, which I denote as δ(β), the maximum

likelihood estimate (MLE) is obtained by maximizing the log-likelihood function for
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Method Name Form for h(δ(k))
BLP I(J×J)
ANJ −[f ′(δ(k))]−1

APNJ −[a(s)]−1

ADJ −Diag(f ′(δ(k)))−1

APDJ −Diag(a(s))−1

Table 3.1: Different forms for h(δ(k)). In terms of convergence speed for the iterative
system in (3.23), the ranking from fastest to slowest is as follows: ANJ, APNJ, ADJ,
APDJ, and BLP. The specific expressions for h(δ(k)) in the context of (3.1) to (3.3)
are given in the Appendix.

the observed sample

LB(β, δ(β)) =
N∑
i=1

M∑
m=1

yim log(P̃im) (3.22)

with respect to β, where yim is the observed value for Yim, and the δ typically in P̃im

is replaced with δ(β). It is tempting to interpret this approach as concentrating δ out

of the likelihood, but the constraints (conditional on β and s) are not the first order

conditions of (3.9) with respect to δ. As such, this approach is only used to enforce

the constraints.

The main difficulty of obtaining the MLE is in inversion of the constraints. An ana-

lytic inverse is not obvious, so numerical methods must be used. I use the iterative

techniques from Chapter 4 of this dissertation which are more computationally effi-

cient than the ones presented in Berry et al. (1995) by an order of magnitude. The

techniques rely on solving the market share constraints for a fixed point using an

accelerated iterative system. When the system is iterated enough times, the iterates

will converge to a unique vector for δ that solves the market share constraints.
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The iterative system is given by

δ(k+1) = δ(k) + h(δ(k))f(δ(k)), (3.23)

where the (k+1) and (k) superscripts respectively indicate the k+1 and k-th iterations

of the system. The step-size matrix h is chosen from one of five forms in Table 3.1,

depending on the desired stability and numerical performance of the system (see

Chapter 4 of this dissertation for a thorough discussion). The vector-valued function

f has elements of the form

log

(
sj

1
N

∑N
i=1 Pij

)
, j = 2, . . . , J, (3.24)

where β is fixed in each Pij. To gain some intuition for (3.23) and (3.24), f can be

interpreted as an adjustment term when the step-size matrix is equal to an identity

matrix. When δ(k) results in predicted in-sample market shares that are too small

relative to every element in s, then (3.24) is positive and the next value δ(k+1) is

equal to δ(k) adjusted positively by (3.24). In turn, the positively-adjusted vector

δ(k+1) increases the predicted in-sample market shares relative to the last iteration.

On the other hand, negative adjustments are produced when the predicted in-sample

market shares are larger than the population shares. Theoretically, these adjustments

continue until (3.24) equals zero, or equivalently, until the value of δ that sets the

predicted in-sample market shares equal to the population market shares is found.

However, because equality in (3.23) may not be possible due to machine precision,

the convergence criterion is ‖ δ(k+1) − δ(k) ‖< c, where c is set to 10−14 or smaller

following Dube et al. (2011). With the preceding intuition in mind, the different
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step-size matrices in Table 3.1 are used to accelerate this adjustment process.

The preceding iterative system is nested in gradient-based methods to obtain the

MLE for θ. The maximization algorithm searches over the space for β, and for each

trial value, (3.23) is used to recover δ(β). The values of β and δ(β) that jointly

maximize (3.22) are the maximum likelihood estimates, denoted by β̂MLE and δ̂MLE.

It is important to note that standard maximization algorithms in statistical software

(e.g. Matlab, Gauss, etc.) will only output β̂MLE and Ĥ(β̂MLE), the estimated

Hessian matrix evaluated at the maximizing value, because β is the only input to the

algorithm. So, to obtain δ̂MLE, apply the iterative system in (3.23) to β̂MLE after the

maximization algorithm has finished. And using a similar approach, the approximate

covariance matrix for θ̂MLE = (β̂MLE, δ̂MLE) is obtained numerically by sampling β(g)

from N (β̂MLE,−Ĥ(β̂MLE)−1) for g = 1, 2, . . . , G draws, recovering δ(β(g)) from (3.23)

for each draw, and computing the sample covariance matrix using the collection of

(β(g), δ(β(g))) vectors. This estimated covariance matrix, denoted by T̂ , converges to

the desired quantity when G is large.

When the market share constraints do not need to be enforced, the MLE for θ is the

vector that maximizes (3.9) for observed data with respect to θ. The log-likelihood

function is easily maximized with gradient-based algorithms since the analytic score

function and Hessian matrix are given in (3.10) and (3.12), respectively. However,

caution must be taken during implementation, because the log-likelihood function is

not necessarily concave in θ and may have almost-flat spots.
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3.5.2 Bayesian estimation

Priors and posterior distribution

For Bayesian analysis, the model from (3.1) to (3.3) is completed with specifications

for the prior distributions of the parameters. I will first discuss priors that incorporate

the market share information and then describe priors without this information at

the end of the section. The prior for θ, denoted by π(θ|µ), is multivariate normal

with mean vector b and covariance matrix B, and it depends on a hyperparameter

µ = (µ1, µ2, . . . , µJ)′ that contains the unknown market shares for all the alternatives

in C. Uncertainty for µ is expressed in a hyperprior π(µ). The posterior density of

interest with market share information is given by

π(θ, µ|Data) ∝ LB(θ)π(θ|µ)π(µ), (3.25)

where Data contains the observed broad choice data.

Uncertainty for the market shares is summarized in a hyperprior π(µ) = D(µ|α),

where

D(µ|α) =

(
Γ(a0)∏J
j=1 Γ(αj)

)
J∏
j=1

(µj)
αj−1 (3.26)

is a standardized multivariate Dirichlet density that depends on a vector of parameters

α = (α1, α2, . . . , αJ)′. In (3.26), a0 =
∑J

j=1 αj, and each αj is strictly positive. The

Dirichlet prior is convenient for two reasons. First, this prior implies that the market

shares are bounded in (0, 1) and must sum to unity. Second, prior information for the
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market shares can be easily incorporated through α. As an example, suppose that

we have prior information in terms of market shares from a previous time period.

Then, one approach to incorporate this knowledge into the problem is to set the

elements in α such that the prior means are centered around the previous shares

and the prior variances reflect our uncertainty about this knowledge. To find these

parameters, recall the properties of the Dirichlet distribution: E(µj) = αj/a0, and

V(µj) = αj(a0 − αj)/a
2
0(a0 + 1) for j = 1, 2, . . . , J . Once a value for a0 is chosen,

then the elements of α that set the desired means and variances can be solved for. In

general, smaller values for a0 result in smaller variances.

Information about θ from the market shares is incorporated into π(θ|µ). I propose

specifying the normal prior around the approximate distribution for θ̂MLE from a

training sample. Specifically, set aside a quarter of the N observations as the training

sample, and using only the training sample, estimate θ with the ML methods from

the previous section subject to the market share constraints where s is replaced with

µ. Then, set the prior mean b equal to θ̂MLE and the covariance matrix B equal

to T̂ + τI(G×G), where I(G×G) denotes a G × G identity matrix. The scalar variance

inflation factor τ is used to control the degree of uncertainty in this prior and can also

be used for prior sensitivity analysis. The advantages of using this prior specification

are discussed next.

Important differences in the Bayesian analysis of the model must be stressed. First,

the market shares are treated as unknown quantities, and their uncertainty is reflected

in the hyperprior. Being able to express uncertainty in the population shares is

important since they are extremely difficult to obtain in practice, and even if they

are available, they may be measured with error. For example, in the case of vehicle

sales, even “official” market share data are often convoluted with sales to car rental

companies, leasing companies, government agencies, and businesses, so the observed
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shares may not accurately reflect the actual market shares among individual decision

makers.

Second, the market share constraints, which relate θ to µ, are not strictly enforced

onto the parameters as they are in ML estimation. Instead, the information from µ

is incorporated through the prior hyperparameters for θ. Loosely interpreted, with

a training sample that is representative of the remaining sample used for inference,

the prior for θ is centered around the parameter vector that sets the predicted in-

sample market shares equal to µ, and the variance inflation factor τ quantifies our

certainty around this vector. As an example, if τ and π(µ) are tightly specified, then

our prior knowledge for θ is highly concentrated around the vector that satisfies the

constraints implied by µ, which is similar to enforcing the constraints into the model.

This uncertainty is important to quantify since the constraints do not need to hold

with equality in small sample, and any parameter values that are recovered by strictly

enforcing the constraints may be misleading.

For the case without incorporating market share information, let π(θ) be a normal

prior for θ with mean vector d and covariance matrix D. The resulting posterior

distribution is π(θ|Data) ∝ LB(θ)π(θ). Note that although the market share infor-

mation is not incorporated in the prior, we may learn about the parameters as long

as the priors for β and δ are dependent.

Markov chain Monte Carlo algorithm

Bayesian estimation is performed by Markov chain Monte Carlo (MCMC) methods

with Metropolis-Hastings (MH) steps. Broadly speaking, this method generates sam-

ples from the posterior distribution by first proposing candidate values from a known

proposal distribution and then accepting them with a specific MH probability. If a
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proposed candidate value is rejected, then the previous value is used instead. Because

the same values may be repeatedly used, this method constructs a Markov chain. Af-

ter a sufficient burn-in period, the draws from the constructed Markov chain are from

the posterior distribution of interest by MH convergence results (Chib and Green-

berg, 1995; Tierney, 1994). The final set of posterior draws is then used to construct

quantities of interest (e.g. posterior means, standard deviations, etc.).

The MCMC algorithm is described first for the case with market share information.

At iteration t, candidate values for β, δ, and µ are proposed as follows

1. Draw µ(t) from q1(µ) = D(µ|α).

2. Given µ(t), maximize LB(θ)π(θ|µ(t)) with respect to θ. Denote θ̂ as the max-

imizing value and −Ĥ(θ̂)−1 as the negative inverse of the estimated Hessian

evaluated at θ̂.

3. Draw θ(t) from q2(θ|µ) = ft(θ|θ̂,−Ĥ(θ̂)−1, ν), which is a t density with location

parameter θ̂, scale matrix −Ĥ(θ̂)−1, and degrees of freedom parameter ν, which

is set to a small number to ensure heavy tails for this distribution.

The vector η(t) = (β(t), δ(t), µ(t)) constitutes a proposed candidate draw from the

posterior distribution in (3.25), where the proposal density is given by

q3(η) = q1(µ)q2(θ|µ). (3.27)

Upon denoting the right hand side of (3.25) as p1(η), the candidate vector is accepted
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for iteration t with the MH transition probability

αMH(η(t−1), η(t)) = min

{
1,
p1(η

(t))q3(η
(t−1))

p1(η(t−1))q3(η(t))

}
. (3.28)

If the candidate vector is not accepted, then treat η(t−1) as the draw for iteration

t. This iterative process is repeated many times and the final collection of vectors

represents the draws from the posterior distribution with market share information.

A few subtle points about the preceding algorithm are now noted. First, the iterative

system from (3.23) is nested into each MCMC iteration. It is needed in Step 2 to

compute the parameters in π(θ|µ(t)). Despite being nested in the algorithm, the

iterative system is inexpensive to evaluate, because the previous draws of η can be

used as the starting values to the system. This method significantly reduces the

number of iterations needed for the iterative system to converge. Second, if the

maximization in Step 2 is difficult perform, then a random walk proposal for q2(θ|µ)

is a viable alternative. And third, the candidate vectors for µ are generated from

the prior density in (3.26) instead of a density that is proportional to the posterior

distribution. This method of generating candidate vectors may be inefficient in the

sense that a large portion of the candidates for µ may not be accepted, but its

performance is quite good when (3.26) is tightly specified. Otherwise, valid draws of

µ from the posterior are incredibly difficult to obtain due to the support restrictions

on the market shares.

The MCMC algorithm for the case without market share information is similar. Be-

fore starting the algorithm, maximize p2(θ) = LB(θ)π(θ) with respect to θ, and denote

θ̂ and −Ĥ(θ̂)−1 as the maximizing value and negative inverse of the estimated Hessian

evaluated at θ̂, respectively. Then, at step t of the algorithm, candidate vectors for

69



www.manaraa.com

θ(t) are proposed from q4(θ) = ft(θ|θ̂,−Ĥ(θ̂)−1, ν) and accepted with the transition

probability

αMH(θ(t−1), θ(t)) = min

{
1,
p2(θ

(t))q4(θ
(t−1))

p2(θ(t−1))q4(θ(t))

}
. (3.29)

If the candidate vector is not accepted, then set θ(t) = θ(t−1).

3.6 Simulation study

This section applies the estimation methods developed in Section 3.5 to simulated

data. The results are used to compare the different estimators and to highlight some

key points regarding the inclusion of market share information. For this simulation

study, the maximum likelihood estimators are analyzed in a repeated sampling study,

and the Bayesian methods are analyzed using a single data set from the sampling

study.

The population data for 20000 decision makers are generated based on (3.1) to (3.3).

The data-generating values for θ are presented in Table 3.2, and the exogenous at-

tributes for all decision makers and alternatives are independently drawn from a

standard normal distribution. For these decision makers, they are faced with ten

alternatives in the choice set, and the broad groups are defined as C1 = {1, 2, . . . , 9}

and C2 = {10}. Note that these group configurations are constructed so that the

observed broad choice data are fairly uninformative for θ. With one exogenous at-

tribute for each decision maker and alternative, there are ten parameters to estimate:

θ = (δ2, δ3, . . . , δ10, β)′.
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ECD BCD BCDC
θ True Est. SE Est. SE Est. SE
δ2 -0.68 -0.68 0.08 -0.72 0.74 -0.69 0.02
δ3 0.87 0.87 0.07 0.86 0.57 0.91 0.03
δ4 1.89 1.89 0.06 1.93 0.52 1.91 0.06
δ5 4.13 4.14 0.07 4.18 0.49 4.09 0.13
δ6 1.16 1.17 0.07 1.19 0.56 1.10 0.03
δ7 1.65 1.65 0.06 1.68 0.54 1.69 0.05
δ8 1.39 1.40 0.06 1.42 0.54 1.34 0.04
δ9 2.21 2.21 0.06 2.24 0.53 2.25 0.07
δ10 -1.01 -1.01 0.08 -1.00 0.43 -1.00 0.03
β 2.98 2.98 0.03 3.01 0.11 2.99 0.11

Table 3.2: Maximum likelihood estimates of θ using exact choice data (ECD), broad
choice data (BCD), and broad choice data with constraints (BCDC).

The repeated sampling study estimates θ over 1000 repetitions. For each repetition,

a subset of 15000 decision makers is randomly sampled from the population, and θ

is estimated with the ML methods from Section 3.5.1 based on exact choice data

(ECD), broad choice data (BCD), and broad choice data with the market share con-

straints enforced (BCDC). The population market shares that are used in BCDC

and throughout this section are calculated from the full population and remain con-

stant over each repetition. The population shares for alternatives one through ten are

roughly 5%, 3%, 7%, 12%, 28%, 8%, 11%, 9%, 14%, and 3%, respectively. In general,

the in-sample market shares from each repetition closely mimic the ones from the

population.

The ML estimates corresponding to θ are presented in Table 3.2. Comparing the

numerical results between ECD and BCD, both sets of estimates are close to their

true values, but there is substantially more variability when BCD is used instead of

ECD. In particular, the standard errors corresponding to β and δ roughly differ by

factors of four and eight, respectively. The difference in variability is expected since

there is generally less information in the broad choice data than in the exact choice

data. In addition, this difference is amplified by the specified group configurations.
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Figure 3.3 illustrates the sampling distributions for the estimators of δ2 and β (the

distributions for the other estimators are omitted since they are qualitatively similar

to the one for δ2) and confirms that the distributions based on BCD are wider than

the ones based on ECD.

With the population market share constraints enforced in BCDC, the resulting ML

estimates are generally close to their true parameter values. In terms of variability, the

standard errors that correspond to δ are substantially smaller than the errors obtained

with ECD and BCD. This suggests that the constraints are helpful in pinning down

the estimates of δ. On the other hand, the standard error corresponding to β does not

differ from one obtained using BCD, which is around four times larger than the one

from ECD. This suggests that the constraints do not contain much information with

regards to β. Figure 3.3 confirms the first observation as the sampling distribution

corresponding to δ2 is highly concentrated around the true value of −0.68 when using

BCDC, even more so than the ones for ECD and BCD. The same figure also confirms

that the distributions corresponding to β are almost identical between ECD and

BCDC.

Bayesian estimation is based on a data set from a single repetition of the repeated

sampling study. Similar to the ML discussion, I present the posterior means and

standard deviations for θ across three cases. The first two cases respectively corre-

spond to ECD and BCD with priors that are fairly non-informative. For these priors,

I set b = 0(G×1) and B = 1000 × I(G×G). The remaining case is based on broad

choice data with an informative prior for θ (BCDIP). As discussed in Section 3.5.2,

this prior is developed using the remaining 5000 observations as a training sample

and the population market shares. The hyperparameter τ is set to 0.1 which slightly

inflates the prior variances for θ. Note that the known population market shares are

used in this simulation exercise, so µ is known with certainty. And as a result, the
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Figure 3.3: Sampling distributions for the maximum likelihood estimators of δ2 and
β. These are based on exact choice data (ECD), broad choice data (BCD), and broad
choice data with population market share constraints (BCDC).

hyperprior π(µ) does not need to be specified. The prior values for b and the standard

deviations implied by B are in Table 3.3. The off-diagonals of B are close to zero and

are not reported.

Table 3.3 contains the Bayesian estimates based on 10000 runs of the MCMC al-

gorithm with 2000 runs discarded for burn-in. The numerical results corresponding

to ECD are similar to those from ML estimation. That is, when ECD is used, the

posterior means are quite close to the true values of the parameters used to generate

the data, and the standard deviations are fairly tight. This suggests that the exact

choice data are very informative about the parameters. For the case with BCD, the

posterior means are in the neighborhood of the true values, but the posterior stan-

dard deviations are relatively large compared to the ones from ECD. Similar to the

ML study, the posterior standard deviations for β and δ differ by factors of four and

eight, respectively. The posterior distributions depicted in Figure 3.4 confirm these
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ECD BCD BCDIP BCDIP Prior
θ True Mean SD Mean SD Mean SD Mean SD
δ2 -0.68 -0.69 0.08 -0.68 0.72 -0.76 0.27 -0.75 0.32
δ3 0.87 0.92 0.07 0.73 0.60 0.75 0.23 0.89 0.32
δ4 1.89 1.98 0.06 2.33 0.49 1.98 0.23 1.85 0.33
δ5 4.13 4.18 0.07 4.29 0.48 4.07 0.22 4.19 0.39
δ6 1.16 1.17 0.07 1.18 0.51 1.07 0.24 1.18 0.32
δ7 1.65 1.75 0.07 1.64 0.56 1.46 0.24 1.56 0.33
δ8 1.39 1.41 0.07 1.72 0.53 1.38 0.25 1.29 0.32
δ9 2.21 2.33 0.07 2.65 0.51 2.34 0.22 2.24 0.34
δ10 -1.01 -0.94 0.08 -0.82 0.43 -1.05 0.14 -1.20 0.32
β 2.98 3.02 0.03 3.03 0.11 3.03 0.10 3.09 0.37

Table 3.3: Posterior estimates for θ. These are based on exact choice data (ECD),
broad choice data (BCD), and broad choice data with an informative prior (BCDIP).

observations.

In the case of BCDIP, the posterior means for δ are generally closer to the true values

than the ones obtained using BCD, and the standard deviations are relatively smaller.

For β, the posterior estimates do not change much over the ones obtained using BCD,

which is a similar conclusion to the ML study. These observations are confirmed by

Figure 3.4. From the figure, we see that the posterior distribution for δ2 has less

variability in this case relative to BCD. Also, note that this distribution for δ2 is not

as highly concentrated as the one from ML estimation. This additional variability

comes from the prior which expresses some uncertainty in the constraints. For β, the

figure confirms that the posterior distributions are almost identical. These Bayesian

estimates suggest two conclusions. The first one is that the posterior distribution

for δ is sensitive to the prior distribution despite the large sample size. This is

expected since the broad choice data in this simulation exercise are constructed to

be uninformative about θ. The second conclusion is that the broad choice data are

informative for β, because the posterior estimates between BCD and BCDIP do not

change much despite a fairly informative prior used in BCDIP.
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A few conclusions for the entire simulation study are in order. First, the market

shares in the form of constraints or prior information contain more information about

δ than β. Second, the addition of market share information improves both estimation

methods over the case without incorporating this information. However, I must warn

that the effectiveness of this technique critically depends on the quality of the market

shares and the sample size. If the population shares do not closely mimic the predicted

in-sample shares, then inference is questionable. This issue is especially problematic

for ML estimation, because the parameters are recovered using strict constraints

based on the shares. In contrast, for the Bayesian methods, a large value for τ can

be used to express uncertainty in this technique. At worst, the resulting prior is

relatively non-informative, and we obtain results similar to the Bayesian estimates

with BCD. Lastly, for some extreme group configurations, the broad choice data will

not be informative for θ (especially δ). For these cases, the Bayesian estimates are

highly sensitive to the prior. But despite this strong dependence, the numerical results

demonstrate that, as long as the practitioner is thoughtful in forming the prior, the

results are well behaved.

3.7 Concluding remarks

This paper introduces a new discrete choice model to analyze choice outcomes that

only broadly represent the actual choices made by the decision makers. It is use-

ful in analyzing situations where the choice behavior at a lower level is desired but

only higher level choice data are available. The parameters from the proposed model

are locally identified, but in some perverse yet interesting cases, they may only be

weakly identified. To efficiently recover the parameter estimates in these troublesome

cases, I show how population-level market shares can be introduced as additional
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Figure 3.4: Posterior distributions for δ2 and β. These are based on exact choice data
(ECD), broad choice data (BCD), and broad choice data with an informative prior
(BCDIP).

information into the problem. A simulation study shows that both maximum like-

lihood and Bayesian estimation techniques benefit from the inclusion of the market

share information. Although the effectiveness of this approach depends critically on

the quality of the population market shares, the results demonstrate that meaningful

relationships can be uncovered using this new class of models.

3.8 Appendix

3.8.1 Likelihood quantities and the information matrix

This section derives the score function and Hessian matrix of the log-likelihood func-

tion for the model with broad choice data. To obtain the score function, expand (3.5)
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in terms of (3.8), resulting in the log-likelihood function

LB(θ) =
N∑
i=1

M∑
m=1

Yim

(
log(

∑
c∈Cm

exp(w′icθ))− log(
J∑
j=1

exp(w′ijθ))

)
. (3.30)

The score function is then

SB(θ) =
∂LB(θ)

∂θ
(3.31)

=
N∑
i=1

M∑
m=1

Yim

(
∂

∂θ
log(

∑
c∈Cm

exp(w′icθ))−
∂

∂θ
log(

J∑
j=1

exp(w′ijθ))

)
(3.32)

=
N∑
i=1

M∑
m=1

Yim

(∑
c∈Cm

wic
exp(w′icθ)∑

s∈Cm
exp(w′isθ)

−
J∑
j=1

wij
exp(w′ijθ)∑J
r=1 exp(w′irθ)

)
(3.33)

=
N∑
i=1

M∑
m=1

Yim

(∑
c∈Cm

wicPic|Cm −
J∑
j=1

wijPij

)
(3.34)

=
N∑
i=1

(
M∑
m=1

Yim
∑
c∈Cm

wicPic|Cm −
M∑
m=1

Yim

J∑
j=1

wijPij

)
(3.35)

=
N∑
i=1

(
M∑
m=1

Yim
∑
c∈Cm

wicPic|Cm −
J∑
j=1

wijPij(
M∑
m=1

Yim)

)
(3.36)

=
N∑
i=1

(
M∑
m=1

Yim
∑
c∈Cm

wicPic|Cm −
J∑
j=1

wijPij

)
, (3.37)

since
∑M

m=1 Yim = 1 for all decision makers.

Before deriving the Hessian matrix, a few miscellaneous quantities are needed. Note

that

∂Pij
∂θ′

= Pij(w
′
ij −

J∑
r=1

w′irPir), (3.38)
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and

∂Pic|Cm

∂θ′
= Pic|Cm(w′ic −

∑
c∈Cm

w′icPic|Cm), (3.39)

Also,

J∑
j=1

wijPijw
′
ij − (

J∑
j=1

wijPij)(
J∑
j=1

wijPij)
′

=
J∑
j=1

(wij −
J∑
r=1

wirPir)Pij(wij −
J∑
r=1

wirPir)
′, (3.40)

which can be shown easily by adding and subtracting (
∑J

r=1wirPir)(
∑J

r=1wirPir)
′ to

the left hand side of (3.40) and manipulating the summation indices. And similarly,

∑
c∈Cm

wicPic|Cmw
′
ic − (

∑
c∈Cm

wicPic|Cm)(
∑
c∈Cm

wicPic|Cm)′

=
∑
c∈Cm

(wic −
∑
s∈Cm

wisPis|Cm)Pic|Cm(wic −
∑
s∈Cm

wisPis|Cm)′. (3.41)

The Hessian matrix is

HB(θ) =
∂SB(θ)

∂θ′
(3.42)

=
N∑
i=1

(
M∑
m=1

Yim
∑
c∈Cm

wic
∂Pic|Cm

∂θ′
−

J∑
j=1

wij
∂Pij
∂θ′

)
(3.43)

=

(
N∑
i=1

M∑
m=1

Yim
∑
c∈Cm

wic
∂Pic|Cm

∂θ′

)
−

(
N∑
i=1

J∑
j=1

wij
∂Pij
∂θ′

)
(3.44)

= L− F, (3.45)
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because

N∑
i=1

M∑
m=1

Yim
∑
c∈Cm

wic
∂Pic|Cm

∂θ′
(3.46)

=
N∑
i=1

M∑
m=1

Yim
∑
c∈Cm

wicPic|Cm(w′ic −
∑
c∈Cm

w′icPic|Cm) (3.47)

=
N∑
i=1

M∑
m=1

Yim
∑
c∈Cm

(wicPic|Cmw
′
ic − wicPic|Cm

∑
c∈Cm

w′icPic|Cm) (3.48)

=
N∑
i=1

M∑
m=1

Yim(
∑
c∈Cm

wicPic|Cmw
′
ic − (

∑
c∈Cm

wicPic|Cm)(
∑
c∈Cm

wicPic|Cm)′) (3.49)

=
N∑
i=1

M∑
m=1

Yim
∑
c∈Cm

(wic −
∑
s∈Cm

wisPis|Cm)Pic|Cm(wic −
∑
s∈Cm

wisPis|Cm)′ (3.50)

= L. (3.51)

where moving from (3.46) to (3.47) uses the expression from (3.39), and moving from

(3.49) to (3.50) uses (3.41). Also, based on a similar argument,
∑N

i=1

∑J
j=1wij

∂Pij

∂θ′
=

F .

The information matrix is easy to derive using the preceding quantities. Note that

the only random terms in HB(θ) are Yim and that E(Yim) = P̃im for all decision

makers and groups. Plugging the preceding expectations into −E(HB(θ)) results in

the desired quantity in (3.15).

3.8.2 Forms for h(δ(k))

The different forms for h(δ(k)) in the iterative system δ(k+1) = δ(k) +h(δ(k))f(δ(k)) are

1. hBLP (δ(k)) = I(J−1×J−1). This step size results in the contraction mapping
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algorithm from Berry et al. (1995).

2. hANJ(δ(k)) = −[f ′(δ(k))]−1, where f ′ is the Jacobian matrix. This is the stan-

dard analytic Newton Jacobian (ANJ) step size and is generally not a diagonal

matrix.

3. hAPNJ(δ(k)) = −[a(s)]−1, where a is an approximation to the Jacobian matrix

that depends on the known market shares. A specific form for a is given at the

end. This is the approximated Newton Jacobian (APNJ) step size and is also

not a diagonal matrix.

4. hADJ(δ(k)) = −Diag(f ′(δ(k)))−1. This step size is referred to as the analytic

diagonal Jacobian (ADJ). This specification results in a diagonal matrix with

entries equal to the negative reciprocals of the diagonal elements from the Ja-

cobian. As an illustration, when there are two fixed points, δ = (δ2, δ3), then

f ′(δ) =

 ∂f1
∂δ2

∂f1
∂δ3

∂f2
∂δ2

∂f2
∂δ3

 , and hADJ(δ) =

 −(∂f1
∂δ2

)−1 0

0 −(∂f2
∂δ3

)−1

 .

5. hAPDJ(δ(k)) = −Diag(a(s))−1. This specification is based on ADJ but uses the

approximation to the Jacobian matrix (referred to as approximated diagonal

Jacobian (APDJ)). Similar to ADJ, the matrix resulting from APDJ is diagonal

with entries that equal the negative reciprocals of the diagonal elements of a(s).

The Jacobian matrix for f can be shown to equal

f ′(δ) =



1−
∑N

i=1 P
2
i2∑N

i=1 Pi2
−

∑N
i=1 Pi2Pi3∑N

i=1 Pi2
. . . −

∑N
i=1 Pi2PiJ∑N

i=1 Pi2

−
∑N

i=1 Pi3Pi2∑N
i=1 Pi3

1−
∑N

i=1 P
2
i3∑N

i=1 Pi3
. . . −

∑N
i=1 Pi3PiJ∑N

i=1 Pi3

... · · · · · · ...

−
∑N

i=1 PiJPi2∑N
i=1 PiJ

−
∑N

i=1 PiJPi3∑N
i=1 PiJ

. . . 1−
∑N

i=1 P
2
iJ∑N

i=1 PiJ


. (3.52)
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The step sizes hADJ(δ(k)) and hANJ(δ(k)) are constructed using (4.6).

The approximated step sizes hAPDJ(δ(k)) and hAPNJ(δ(k)) are based on known market

shares around the fixed point and the assumption of homogenous decision makers.

Specifically, from the market share constraints, we know that sj = N−1
∑N

i=1 Pij must

hold for j = 2, 3, . . . , J around the fixed point, therefore all the denominators in (4.6)

of the form
∑N

i=1 Pij are approximated with sj × N . Next, by assuming that each

decision maker behaves like the market shares, we can approximate
∑N

i=1 PijPik from

(4.6) with sj × sk ×N . With these assumptions, f ′(δ) is approximated as

a(s) =



1− s2 −s3 . . . −sJ

−s2 1− s3 . . . −sJ
... · · · · · · ...

−s2 −s3 . . . 1− sJ


. (3.53)

This approximated matrix is used to construct hAPDJ(δ(k)) and hAPNJ(δ(k)). The

approximations are better when the iterative system is close to the fixed point and

when the decision makers behave like the market shares. Even if these assumptions

do not hold exactly, the resulting iterative systems should still be faster than the

BLP system. Another feature of this approximation is that it does not depend on

δ. Unlike the analytic versions, it is not necessary to recalculate these step sizes at

each δ or in each iteration of the system. This saves a lot of time because multiple

evaluations of the partial derivatives and inversions matrices are avoided. The biggest

improvements occur when J is large.

81



www.manaraa.com

Chapter 4

Speeding up the BLP contraction

mapping

4.1 Introduction

The model from Berry et al. (1995) (hereafter referred to as BLP) is widely used in

applied work. It is a key tool to examine questions regarding market power, mergers,

innovation, and valuation of new brands in differentiated-product industries. The

main estimation algorithm involves minimizing a generalized method of moments

(GMM) objective function which depends on the solution to a high-dimensional sys-

tem of nonlinear equations. To solve this system of equations, Berry (1994) and BLP

suggest using a contraction mapping. The mapping is implemented as a multivari-

ate iterative system that, when iterated enough times, will converge within a certain

criteria to a unique vector of fixed points. This iterative system is solved every time

the GMM objective function is evaluated in a minimization routine.

The BLP model has been estimated in a variety of ways. For general overviews, see
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Knittel and Metaxoglou (2012) and Nevo (2000). From the theoretical side, Jiang

et al. (2009), Musalem et al. (2009), and Yang et al. (2003) utilize Bayesian Markov

chain Monte Carlo (MCMC) estimation algorithms, and Park and Gupta (2009, 2011)

provide simulated maximum likelihood (MSL) estimators. Most of the aforementioned

papers also embed the BLP contraction mapping inside their proposed estimation

procedures which is by far the most popular approach.

A growing body of research is concerned with how the convergence of the inner BLP-

style contraction mapping affects the outer estimation routines. Dube et al. (2011),

Judd and Skrainka (2011), Knittel and Metaxoglou (2012), and Skrainka (2012) warn

that estimating the unknown parameters in the BLP model with a combination of an

outer non-linear search algorithm (e.g. the GMM minimization or MSL maximization

algorithm) and the inner contraction mapping can be difficult. In particular, Dube

et al. (2011) conclude that errors from the inner contraction mapping will propagate

to the outer objective function and result in failures to converge. These errors are

results from incorrectly specifying the convergence criteria to be too loose for the

inner contraction mapping. This practice of setting loose convergence criteria is not

uncommon in applied work to reduce computational demands of the estimation pro-

cedures. Although this warning is in the context of GMM estimation, intuitively it

should hold for any other method of estimation that requires the contraction map-

ping. Therefore, as a rule of thumb, Dube et al. (2011) recommend setting the inner

convergence criteria to 10−14 or smaller.

Setting such a tight convergence criteria for the inner iterative system is a major bur-

den in empirical work. While it is relatively quick for the iterative system to converge

for a single run of the algorithm, it is extremely expensive in terms of computational

time when repeated evaluations are needed, particularly when the algorithm is em-

bedded into the aforementioned estimation routines. It is common to evaluate the
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contraction mapping at least a few hundred times during estimation. To lighten this

computational burden, Dube et al. (2011) recommend imposing the system of nonlin-

ear equations as constraints and using constrained maximum likelihood to estimate

the unknown parameters. They find that estimation is an order of magnitude faster

than using the contraction mapping, but this approach is still slow when there are

many alternatives across the markets. Besides this paper, I am unaware of any other

work in the literature on explicitly speeding up the BLP contraction mapping.

In this paper, I explore four simple modifications for the BLP contraction mapping

to improve its rate of convergence. The modifications differ in their tradeoffs between

convergence speed, numerical stability, and ease of implementation, so it is up to the

practitioner to choose the most suitable modification for his problem. The motivation

for these modifications come from the relationship between contraction mappings

and fixed-point algorithms. In particular, I employ both analytic and approximated

Newton algorithms (also known as Newton-Raphson algorithms) to solve the system

of nonlinear equations. A unique contribution of this paper is in the approximated

Newton step size which exploits knowledge of the true market shares close to the fixed

points. An important implication of this approximation is that this step size does not

need to be recalculated at each parameter value or in each iteration of the iterative

system. This feature significantly reduces computational time, and as the simulation

study will show, improves the numerical stability of the iterative system relative to

the analytic Newton algorithm.

Moreover, the modifications are designed such that they can be incorporated into

existing BLP-style contraction mapping code with minimal effort. I suspect that a

majority of the applied researchers using the BLP model have the original contraction

mapping specification coded already, so in order to reduce the amount of additional

coding, I have kept the modifications relatively simple. While the modifications
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proposed in this paper may not converge as fast as the “cutting-edge” root-finding

algorithms, my modifications are simple to code (typically only a few additional lines

of code are needed), and the practitioner does not need to worry about whether their

statistical software (e.g. R, Matlab, Gauss, etc.) has these “cutting-edge” algorithms.

In a simulation study, I show that the new algorithms require significantly fewer

iterations to converge to the unique vector of fixed points relative to the original BLP

specification. The “best” modification is the one based on the analytic Newton step

and results in an 80-fold improvement. The approximated Newton steps also perform

well and result in an 8-fold improvement.

The remainder of the paper is organized as follows. Section 4.2 provides the neces-

sary background on the theory of fixed-point algorithms and contraction mappings.

Based on the intuition from the fixed-point algorithms, Section 4.3 describes the four

proposed modifications, while Section 4.4 demonstrates their performance in a simu-

lation study. The conclusion and directions for future study are contained in Section

4.5.

4.2 Background

The following definitions and theorems are all from Olver (2006).

Definition 2 An iterative system has the form δ(k+1) = g(δ(k)), where g : RJ → RJ

is a real vector-valued function.

Note that the (k) and (k + 1) superscripts in the preceding definitions respectively

denote the k-th and (k+ 1)-th iterations of the iterative system and not higher order

derivatives.
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Definition 3 A fixed point to an iterative system is a vector δ∗ ∈ RJ such that

g(δ∗) = δ∗.

Definition 4 A function g : RJ → RJ is called a contraction mapping on a domain

Ω ⊂ RJ if

1. it maps Ω to itself, so g(δ) ∈ Ω whenever δ ∈ Ω, and

2. there exists a constant 0 ≤ σ < 1 such that

‖ g(δ0)− g(δ1) ‖≤ σ ‖ δ0 − δ1 ‖ for all δ0, δ1 ∈ Ω. (4.1)

Lemma 1 If g : Ω → Ω and ‖ g′(δ) ‖< 1 for all δ ∈ Ω, then g is a contraction

mapping.

Theorem 1 If g is a contraction mapping on a bounded domain Ω ⊂ RJ , then g

admits a unique fixed point δ∗. Moreover, starting with any initial point δ(0) ∈ Ω, the

iterates δ(k+1) = g(δ(k)) necessarily converge to the fixed point: δ(k) → δ∗.

The BLP iterative system has the form δ(k+1) = g(δ(k)), where the j-th value of the

vector-valued function g is gj(δ
(k)) = δ

(k)
j + log(sj/N

−1∑N
i=1 Pij(δ

(k))) (more details

on this iterative system later). BLP proves that this is a contraction mapping (Berry

et al., 1995), but it can also be shown easily by verifying Lemma 1 for any matrix

norm (e.g. the p, 1, or ∞-norms). The advantage to this iterative system is that we

are guaranteed by Theorem 1 to converge to the unique fixed point regardless of the

starting value. However, the disadvantage is that this process only has a linear rate

of convergence.
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In general, the matrix-norm of g′(δ) from Lemma 1 governs the rate of convergence for

the contraction mapping, where the mapping converges fastest when g′(δ) = 0(J×J).

Intuitively, this says that we move across the iterative function the fastest when it is

flat in all directions. This intuition is used to construct an iterative system that can

converge very rapidly.

Suppose that we want to design an efficient fixed-point iterative system δ(k+1) =

g(δ(k)) = δ(k) + h(δ(k))f(δ(k)) that has a fixed point at δ∗ whenever f(δ∗) = 0. Then,

following the intuition from the preceding paragraph, the fastest convergence occurs

whenever g′(δ) = 0(J×J), so the problem boils down to finding h(δ(k)) such that this

condition is satisfied. The solution is h(δ(k)) = −[f ′(δ(k))]−1 and results in the Newton

iterative system.

Definition 5 The Newton iterative system is δ(k+1) = δ(k)− [f ′(δ(k))]−1f(δ(k)), where

f ′(·) is the Jacobian of f , and the vector-valued function f equals a vector of zeros

0J×1 at the fixed point (i.e. f(δ∗) = 0(J×1)).

Theorem 2 Let δ∗ be a solution to the system f(δ∗) = 0. Then, provided δ(0) is

sufficiently close to δ∗, the Newton iteration scheme converges at a quadratic rate to

the solution δ∗.

Using similar notation, the BLP iterative system can be written as δ(k+1) = δ(k) +

I(J×J)f(δ(k)), where I(J×J) is a J × J identity matrix, and the vector-valued function

f contains elements of the form fj(δ
(k)
j ) = log(sj/N

−1∑N
i=1 Pij(δ

(k))). Clearly, the

vector δ that sets the predicted market shares equal to the known market shares is

a fixed point of this iterative system, but because I(J×J) 6= −[f ′(δ(k))]−1, the original

BLP contraction mapping does not converge as fast as the Newton iterative system

near the fixed point.
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Therefore, the BLP rate of convergence can be improved with Newton-type algo-

rithms or variations of it. It is important to note that the BLP contraction mapping

is globally convergent by Theorem 1, while the Newton algorithms are convergent

around the fixed point. Provided that we have reasonable starting values, the locally

convergent nature of the Newton algorithms should not be an issue. In the next

section, I will explore four different specifications for h(δ(k)).

4.3 Four proposals for h(δ(k))

Using the framework from the preceding section, the BLP iterative system and the

proposed modifications in this paper can be expressed and differentiated by their

expressions for h(δ(k)) (referred to as step sizes) in the iterative system δ(k+1) =

g(δ(k)) = δ(k) + h(δ(k))f(δ(k)). They are

1. hBLP (δ(k)) = I(J×J). This step size results in the standard BLP contraction

mapping.

2. hANJ(δ(k)) = −[f ′(δ(k))]−1. This is the standard analytic Newton Jacobian

(ANJ) and is generally not a diagonal matrix.

3. hAPNJ(δ(k)) = −[a(s)]−1. This is the approximated Newton Jacobian (APNJ)

and is also not a diagonal matrix. The approximation function a is based on the

known market shares, denoted as a vector s, around the fixed point. A specific

example will be given in the subsequent discussion.

4. hADJ(δ(k)) = −Diag(f ′(δ(k)))−1. This step size is referred to as the analytic

diagonal Jacobian (ADJ). This specification results in a diagonal matrix with

entries as the negative reciprocals of the diagonal elements from the Jacobian

f ′(δ(k)). As an illustration, when there are two fixed points, δ = (δ1, δ2), then
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f ′(δ) =

 ∂f1
∂δ1

∂f1
∂δ2

∂f2
∂δ1

∂f2
∂δ2

 , and hADJ(δ) =

 −(∂f1
∂δ1

)−1 0

0 −(∂f2
∂δ2

)−1

 .

5. hAPDJ(δ(k)) = −Diag(a(s))−1. This specification is based on ADJ but uses

the approximation to the Jacobian matrix f ′(δ(k)) (referred to as approximated

diagonal Jacobian (APDJ)). Similar to ADJ, the matrix resulting from APDJ is

diagonal with entries that equal the negative reciprocals of the diagonal elements

of a(s).

Summaries of the methods are in Tables 4.1 and 4.2. The motivation for the form of

hANJ(δ(k)) was discussed in the previous section: it sets the iterative function flat in

all directions with respect to all variables which results in rapid convergence rates.

This form for the step size should result in the fastest iterative system. However,

this matrix can be difficult to compute when Jacobian is not in a nice form, and

more importantly, difficult to invert numerically when the Jacobian is numerically

unstable. To avoid the computational obstacle of hANJ(δ(k)), the approximated ver-

sion, hAPNJ(δ(k)), is a viable alternative. This alternative step size shares the same

intuition and should have the second fastest rate of convergence.

To overcome the invertibility issue of hANJ(δ(k)), hADJ(δ(k)) can be used instead. It

still sets the iterative function g flat in certain directions but not with respect to all

the variables (the off-diagonals of g′ will not necessarily equal 0). This form is easily

invertible due to the diagonal structure and should offer moderate improvements in

convergence speed. However, in the case that hADJ(δ(k)) is difficult to compute, we

can resort to the approximation of it: hAPDJ(δ(k)). This form is also easy to invert

and has the added advantage of being easy to compute due to the approximation

(more details later).
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Method Form of h(δ(k))
hBLP IJ×J
hANJ −[f ′(δ(k))]−1

hAPNJ −[a(s)]−1

hADJ −Diag(f ′(δ(k)))−1

hAPDJ −Diag(a(s))−1

Table 4.1: Forms for the various step size matrices.

Method Pros Cons
hBLP Global convergence Linear convergence
hANJ Quadratic convergence Hard to compute, invert
hAPNJ Easy to compute, stable Hard to invert
hADJ Easy to invert, stable Hard to compute, inefficient
hAPDJ Easy to compute, invert, stable Inefficient

Table 4.2: Pros and cons of the various methods. In terms of convergence speed, from
fastest to slowest is as follows: ANJ, APNJ, ADJ, APDJ, BLP.

To establish a context for these methods, consider a standard multinomial logit model:

U∗ij = δj + x′ijβ + εij (4.2)

Yi = j if U∗ij ≥ max(U∗ik)∀k ∈ C, (4.3)

for i = 1, 2, . . . , N and j = 1, 2, . . . , J , where i denotes the decision maker, and j

denotes the alternative from the choice set C.

Equation (4.2) models U∗ij, the latent utility for decision maker i from alternative

j, with an alternative-specific constant δj, vector of observed characteristics, xij,

vector of unknown coefficients, β, and an unobserved disturbance term, εij. The

disturbance terms are distributed i.i.d. type 1 extreme value across decision makers

and alternatives. Note that the vector xij varies across both decision makers and

alternatives, but vectors of characteristics that only vary with the decision makers or

alternatives can also be used. Also, note that δ1 = 0 for identification reasons.
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A simple method to estimate the parameters of this model, β and δ = (δ2, δ3, . . . , δJ),

is to maximize the observed log-likelihood L(β, δ) =
∑N

i=1 yij log(Pij) with respect to

β and δ, where yij = 1 when the i-th decision maker is observed to choose alternative

j and 0 otherwise, and

Pij =
eδj+x

′
ijβ∑J

r=1 e
δr+x′irβ

. (4.4)

is the logit probability of decision maker i choosing alternative j. When the number

of alternatives is large, this method of estimation is difficult. For example, if J =

1000, then ML estimation would require a maximization routine over at least 1000

parameters (including the β), which would also require a large gradient vector and

Hessian matrix.

Alternatively, we can use the contraction mapping relationship and just search over

the space of β. BLP proved that, conditional on β, the vector of alternative-specific

constants, δ, is uniquely determined by the known market shares. Therefore, an

equivalent way of estimating the unknown parameters in the multinomial logit model

is to maximize the log-likelihood L(β, δ(β)) =
∑N

i=1 yij log(Pij) with respect to β

subject to the market share constraints sj = N−1
∑N

i=1 Pij for j = 2, 3, . . . , J . This

is an equivalent problem, because the market share constraints are the first order

conditions of the log-likelihood function with respect to δ for a fixed β. So, this

approach is similar concentrating δ out of the likelihood.

In terms of implementation, the optimization algorithm would search over the space of

β, but for each value of β, the vector δ is solved for using the market share constraints

and the contraction mapping algorithm. The contraction mapping is implemented as
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the iterative system

δ
(k+1)
j = δ

(k)
j + h(δ(k))f(δ(k)), (4.5)

where the vector-valued function f has elements of the form

δ
(k)
j + log(sj/N

−1
N∑
i=1

Pij(δ
(k))).

The iterative system is iterated until ‖ δ(k+1) − δ(k) ‖< c, where c is a convergence

criterion that needs to be set to 10−14 or smaller following Dube et al. (2011).

The Jacobian matrix for f can be shown to equal

f ′(δ) =



1−
∑N

i=1 P
2
i2∑N

i=1 Pi2
−

∑N
i=1 Pi2Pi3∑N

i=1 Pi2
. . . −

∑N
i=1 Pi2PiJ∑N

i=1 Pi2

−
∑N

i=1 Pi3Pi2∑N
i=1 Pi3

1−
∑N

i=1 P
2
i3∑N

i=1 Pi3
. . . −

∑N
i=1 Pi3PiJ∑N

i=1 Pi3

... · · · · · · ...

−
∑N

i=1 PiJPi2∑N
i=1 PiJ

−
∑N

i=1 PiJPi3∑N
i=1 PiJ

. . . 1−
∑N

i=1 P
2
iJ∑N

i=1 PiJ


. (4.6)

From (4.6), the step sizes hADJ(δ(k)) and hANJ(δ(k)) can be constructed easily.

The approximated step sizes hAPDJ(δ(k)) and hAPNJ(δ(k)) are based on known market

shares around the fixed point and the assumption of homogenous decision makers.

Specifically, from the market share equations, we know that sj = N−1
∑N

i=1 Pij must

hold for j = 2, 3, . . . , J around the fixed point, therefore we can approximate all the

denominators of the form
∑N

i=1 Pij from (4.6) with sj × N . Next, by assuming that

each decision maker behaves like the market shares, we can approximate
∑N

i=1 PijPik

from (4.6) with sj × sk ×N .
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With these assumptions, f ′(δ) can be approximated as

a(MS) =



1− s2 −s3 . . . −sJ

−s2 1− s3 . . . −sJ
... · · · · · · ...

−s2 −s3 . . . 1− sJ


. (4.7)

This approximated matrix is used to construct hAPDJ(δ(k)) and hAPNJ(δ(k)). The

approximations are better when the iterative system is close to the fixed point and

when the decision makers behave like the market shares. Even if these assumptions

do not hold exactly, the resulting iterative systems should still be faster than the BLP

system. Another feature of this approximation is that it does not depend on δ. Unlike

the analytic modifications, it is not necessary to recalculate these step sizes at each δ

or in each iteration of the system. This saves a lot of time because calculations of the

partial derivatives and inversions matrices are avoided. The biggest improvements

occur when J is large. Also, from the simulation study, this matrix is numerically

more stable than the analytic Jacobian.

4.4 Simulation study

I perform a Monte Carlo simulation study to analyze the performance of the various

algorithms. Specifically, I generate 500 sets of data for a conditional logit model,

and for each set of data, the δ vector from the data generating process (conditional

on the true β) is recovered using the five algorithms (BLP and the four proposed

algorithms).
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Figure 4.1: Boxplots for computational time and number of iterations until conver-
gence for 500 sets of data. The convergence criterion is set to 10−14.

I use N = 5000 decision makers and J = 6 alternatives. For identification reasons, δ1

is set to 0, which means only δ = (δ2, δ3, . . . , δ6) needs to be recovered. For each set of

data, the elements of the “true” δ and covariate vectors xij are drawn randomly from

a Normal distribution with mean 0 and standard deviation 2. The starting vector for

each algorithm is set to a vector of zeros. The convergence criterion is set to 10−14.

Figure 4.1 contains boxplots of the computational time and number of iterations re-

quired until convergence over 500 sets of data. These plots suggest that the BLP

contraction mapping is quite slow compared to the proposed methods. The median

number of iterations until convergence for BLP is 653, while the medians for APDJ,

ADJ, APNJ, ANJ are 469, 139, 84, and 8, respectively. The analytic Newton (ANJ)

step size reduces the median number of iterations required until converge by approx-

imately 80 times relative to BLP. Similarly, the approximated Newton (APNJ) step

size needs approximately 8 times fewer iterations to converge.
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The figure also reveals that the number of iterations it takes for the BLP method to

converge has large variability while the ANJ and APNJ methods do not. In this study,

the BLP method can at times require up to 3600 iterations to converge while the ANJ

and APNJ methods only need 196 and 14 iterations, respectively. At the extremes,

these two proposed methods offer approximately 20-fold and 260-fold improvements

over BLP.

Therefore, I recommend using the analytic Newton step size (ANJ) whenever it is

possible. But, if it takes too much time to compute, then the approximated Newton

step size (APNJ) offers somewhat comparable performance. Otherwise, the two re-

maining approaches, APDJ and ADJ, also provide moderate improvements over the

BLP contraction mapping. See Table 4.2 for their relative merits.

4.5 Concluding remarks and future research

The four proposed methods are all faster to converge than the BLP contraction map-

ping. I recommend the analytic Newton (ANJ) step size whenever possible, but the

approximated Newton (APNJ) step size offers good performance as well. If local

convergence is a concern, they can be combined with the BLP step size matrix. For

example, use the BLP step size matrix in the initial iterations of the system, then

switch over to one of the proposed step sizes in the later iterations. This approach uses

the global convergence feature of the BLP method to bring the initial iterates closer

to the fixed point first and then capitalizes on the increased speed of the proposed

methods after that. This hybrid method works extremely well and is recommended

when there are suspected convergence issues.

These new methods are promising as they are easy to code and result in less variability
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in terms of the number of iterations required to converge. Future research direction

includes extending this analysis to mixed logits and comparing the results to the

constrained maximum likelihood approach of Dube et al. (2011).
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